Publicado
In-vivo Pharmacokinetics Evaluation of Canagliflozin Self-Nanomicellizing Solid Dispersion as Oral Capsules Dosage Forms
Evaluación de la farmacocinética in vivo de la dispersión sólida auto-nanomicelizante de canagli-flozina en cápsulas orales
Avaliação farmacocinética in vivo da dispersão sólida autonanomicelizante de canagliflozina como formas de dosagem de cápsulas orais
DOI:
https://doi.org/10.15446/rcciquifa.v54n1.117438Palabras clave:
Self-nanomicellizing, pharmacokinetics, bioavailability, canagliflozin (en)Auto-nanomicelizante, farmacocinética, biodisponibilidad, canagliflozina (es)
Autonanomicelização, farmacocinética, biodisponibilidade, canagliflozina (pt)
Descargas
Background: Self-nanomicellizing solid dispersion (SNMSD) is a method that integrates the advantages of solid dispersion with nanomicelles, enhancing the oral bioavailability of poorly water-soluble pharmaceuticals. This solid drug delivery system, when it comes into contact with GIT fluids, it forms nanomicelles. Canagliflozin (CFZ), a sodium-glucose co-transporter inhibitor, has become popular for managing type 2 diabetes. CFZ faces biopharmaceutical challenges such as poor water solubility, poor permeation, and susceptibility to P-glycoprotein mediated efflux, posing challenges for its pharmaceutical development. This study aims to compare the in-vivo pharmacokinetic parameters of CFZ in rats when prepared as SNMSD versus CFZ-suspension. Methods: The SNMSD formula was prepared using a solvent evaporation method using soluplus as a nanocarrier in a drug-to-carrier ratio of 1:4. The in-vivo studies were conducted on twelve male Wister rats with an average weight of 230±9.3 g. The rats were divided into two groups. In Group 1, the rats were orally administered pure CFZ in 0.1% w/v carboxymethylcellulose 2mg/mL suspension. In Group 2, the rats were administered the identical dosage of the CFZ-SNMSD formula dissolved in water given orally. Results: The pharmacokinetics parameters in rats were obtained from plasma concentration/time data of the prepared CFZ-SNMSD formula, and these parameters were significantly higher (p < 0.05) when compared with CFZ-suspension. Cmax for the CFZ-SNMSD formula was 4109 ng/ml, and Tmax was 2 hours compared to the CFZ-suspension Cmax value of 1401 ng/mL and 4 hours. The relative bioavailability of canagliflozin for oral SNMSD capsule to oral suspension was equal to 204.7%. This is due to soluplus® dispersibility, solubilization, and p-glycoprotein inhibitory effect, overcoming GIT membrane barriers. Conclusions: The utilization of SNMSD demonstrated great promise as an oral delivery system to enhance the oral bioavailability of canagliflozin
Antecedentes: La dispersión sólida auto-nanomicelizante (SNMSD) es un método que combina las ventajas de la dispersión sólida con nanomicelas, mejorando la biodisponibilidad oral de fármacos poco solubles en agua. Este sistema de liberación de medicamentos sólidos forma nanomicelas al entrar en contacto con los fluidos del tracto gastrointestinal (GIT). La canagliflozina (CFZ), un inhibidor del cotransportador de sodio-glucosa, ha ganado popularidad para el tratamiento de la diabetes tipo 2. Sin embargo, CFZ enfrenta desafíos biofarmacéuticos, como baja solubilidad en agua, baja permeación y susceptibilidad a la expulsión mediada por la glicoproteína P, lo cual representa un reto para su desarrollo farmacéutico. Este estudio tiene como objetivo comparar los parámetros farmacocinéticos in vivo de CFZ en ratas cuando se prepara como SNMSD en comparación con una suspensión de CFZ. Métodos: La fórmula SNMSD se preparó mediante un método de evaporación de solvente utilizando soluplus como nanotransportador en una relación fármaco-transportador de 1:4. Los estudios in vivo se realizaron en doce ratas Wister machos con un peso promedio de 230 ± 9,3 g. Las ratas se dividieron en dos grupos: en el Grupo 1, las ratas recibieron oralmente CFZ puro en una suspensión de 2 mg/mL en carboximetilcelulosa al 0,1% p/v. En el Grupo 2, las ratas recibieron la misma dosis de la fórmula CFZ-SNMSD disuelta en agua por vía oral. Resultados: Los parámetros farmacocinéticos en ratas se obtuvieron a partir de datos de concentración plasmática/tiempo de la fórmula CFZ-SNMSD, y estos parámetros fueron significativamente más altos (p < 0,05) en comparación con la suspensión de CFZ. El valor de Cmax para la fórmula CFZ-SNMSD fue de 4109 ng/ml, y el Tmax fue de 2 horas en comparación con el valor de Cmax de 1401 ng/mL y Tmax de 4 horas de la suspensión de CFZ. La biodisponibilidad relativa de la canagliflozina para la cápsula oral de SNMSD en comparación con la suspensión oral fue del 204,7%. Esto se debe a la capacidad de dispersión, solubilización y el efecto inhibidor de la glicoproteína P de soluplus®, superando las barreras de la membrana del GIT. Conclusiones: El uso de SNMSD demostró un gran potencial como sistema de liberación oral para mejorar la biodisponibilidad de la canagliflozina.
Contexto: A dispersão sólida autonanomicelizante (SNMSD) é um método que integra as vantagens da dispersão sólida com nanomicelas, aumentando a biodisponibilidade oral de produtos farmacêuticos pouco solúveis em água. Este sistema de administração de medicamentos sólidos, quando entra em contato com fluidos do TGI, forma nanomicelas. A canagliflozina (CFZ), um inibidor do cotransporta-dor de sódio-glicose, tornou-se popular no tratamento do diabetes tipo 2. A CFZ enfrenta desafios biofarmacêuticos, como baixa solubilidade em água, baixa permeação e suscetibilidade ao efluxo mediado pela glicoproteína P, o que representa desafios para seu desenvolvimento farmacêutico. Este estudo tem como objetivo comparar os parâmetros farmacocinéticos in vivo da CFZ em ratos quando preparada como SNMSD versus suspensão de CFZ. Métodos: A fórmula SNMSD foi preparada usando um método de evaporação de solvente usando Soluplus como nanocarreador em uma proporção de fármaco para carreador de 1:4. Os estudos in vivo foram conduzidos em doze ratos Wister machos com peso médio de 230 ± 9,3 g. Os ratos foram divididos em dois grupos. No Grupo 1, os ratos receberam CFZ puro por via oral em suspensão de carboximetilcelulose 0,1% p/v 2 mg/mL. No Grupo 2, os ratos receberam a dosagem idêntica da fórmula CFZ-SNMSD dissolvida em água administrada por via oral. Resultados: Os parâmetros farmacocinéticos em ratos foram obtidos a partir de dados de concentração plasmática/tempo da fórmula CFZ-SNMSD preparada, e esses parâmetros foram significativamente maiores (p < 0,05) quando comparados com a suspensão CFZ. Cmax para a fórmula CFZ-SNMSD foi de 4109 ng/ml, e Tmax foi de 2 horas em comparação com o valor Cmax da suspensão CFZ de 1401 ng/mL e 4 horas. A biodisponibilidade relativa da canagliflozina para cápsula oral de SNMSD para suspensão oral foi igual a 204,7%. Isso se deve à dispersibilidade, solubilização e efeito inibitório da glicoproteína P do Soluplus®, superando as barreiras da membrana do TGI. Conclusões: A utilização de SNMSD demonstrou grande promessa como um sistema de administração oral para aumentar a biodisponibilidade oral da canagliflozina.
Referencias
1. S. Onoue, H. Suzuki, Y. Kojo, S. Matsunaga, H. Sato, T. Mizumoto, et al., Self-micellizing solid dispersion of cyclosporine A with improved dissolution and oral bioavailability, European Journal of Pharmaceutical Sciences, 62, 16–22 (2014). doi: https://doi.org/10.1016/j.ejps.2014.05.006
2. H. Suzuki, Y. Kojo, K. Yakushiji, K. Yuminoki, N. Hashimoto, S. Onoue, Strategic application of self-micellizing solid dispersion technology to respirable powder formulation of tranilast for improved therapeutic potential, International Journal of Pharmaceutics, 499(1–2), 255–62 (2016). doi: https://doi.org/10.1016/j.ijpharm.2015.12.065
3. D. Singh, A. K. Tiwary, N. Bedi, Canagliflozin loaded SMEDDS: formulation optimization for improved solubility, permeability, and pharmacokinetic performance, Journal of Pharmaceutical Investigation, 49, 67–85 (2019). doi: https://doi.org/10.1007/s40005-018-0385-5
4. R. Lajara, The potential role of sodium-glucose co-transporter 2 inhibitors in combination therapy for type 2 diabetes mellitus, Expert Opinion on Pharmacotherapy, 15(17), 2565–85 (2014). doi: https://doi.org/10.1517/14656566.2014.968551
5. D. Singh, A. P. Singh, D. Singh, A. K. Kesavan, S. Arora, A. K. Tiwary, et al., Enhanced oral bioavailability and anti-diabetic activity of canagliflozin through a spray dried lipid-based oral delivery: a novel paradigm, DARU Journal of Pharmaceutical Sciences, 28(1), 191–208 (2020). doi: https://doi.org/10.1007/s40199-020-00330-3
6. J. Y. Lee, W. S. Kang, J. Piao, I. S. Yoon, D. D. Kim, H. J. Cho, Soluplus®/TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan, Drug Design, Development and Therapy, 9, 2745–56 (2015). doi: https://doi.org/10.2147/DDDT.S84070
7. S. Patil, S. Bahadure, S. Patil, Formulation of canagliflozin hemihydrate-loaded bilosomes for the treatment of Type-2 diabetes mellitus: in vitro, in vivo and in silico molecular docking studies, Journal of Drug Delivery Science and Technology, 86, 104630 (2023). doi: https://doi.org/10.1016/j.jddst.2023.104630
8. D. Singh, A. K. Tiwary, T. S. Kang, N. Bedi, Polymeric precipitation inhibitor based supersaturable self-microemulsifying drug delivery system of canagliflozin: Optimization and evaluation, Current Drug Delivery, 18(9), 1352–67 (2021). doi: https://doi.org/10.2174/1567201818666210217155909
9. H. Wang, Y. He, Y. Hou, Y. Geng, X. Wu, Novel self-nanomicellizing formulation based on Rebaudioside A: A potential nanoplatform for oral delivery of naringenin, Materials Science and Engineering: C, 112, 110926 (2020). doi: https://doi.org/10.1016/j.msec.2020.110926
10. N. A. Jassem, S. N. A. Alhammid, Ex vivo permeability study and in vitro solubility characterization of oral canagliflozin self-nanomicellizing solid dispersion using Soluplus® as a nanocarrier, Acta Marisiensis - Seria Medica, 70(2), 42–9 (2024). doi: https://doi.org/10.2478/amma-2024-0011
11. S. Jacob, A. B. Nair, M. A. Morsy, Dose conversion between animals and humans: A practical solution, Indian Journal of Pharmaceutical Education and Research, 56, 600–7 (2022). doi: https://doi.org/10.5530/ijper.56.3.108
12. O. S. Salih, E. J. Al-Akkam, Pharmacokinetic parameters of ondansetron in rats after oral solution and transdermal invasomes gel: A comparison study, Journal of Advanced Pharmacy Education & Research, 13(1), 117 (2023). doi: https://doi.org/10.51847/hs5a27ei6o
13. K. R. Gupta, S. Shelke, A. V. Ganorkar, N. Patel, M. J. Umekar, Analysis of canagliflozin in rat plasma after oral administration by liquid chromatographic as (pharmacokinetic study), Asian Journal of Applied Chemistry Research, 9(2), 22–30 (2021). doi: https://doi.org/10.9734/ajacr/2021/v9i230210
14. H. Li, T. Bigwarfe, M. Myzithras, E. Waltz, J. Ahlberg, Application of Mitra® microsampling for pharmacokinetic bioanalysis of monoclonal antibodies in rats, Bioanalysis, 11(1), 13–20 (2019). doi: https://doi.org/10.4155/bio-2018-0228
15. S. Satyavert, S. Gupta, A. B. Nair, M. Attimarad, Development and validation of bioanalytical method for the determination of hydrazinocurcumin in rat plasma and organs by HPLC-UV, Journal of Chromatography B, 1156, 122310 (2020). doi: https://doi.org/10.1016/j.jchromb.2020.122310
16. B. Davit, D. Conner, L. Shargel, Drug product performance, in vivo: Bioavailability and bioequivalence, Applied Biopharmaceutics & Pharmacokinetics, 7th ed.; Shargel, L., Yu, A., Eds., 469–528 (2016).
17. S. H. Jaber, N. A. Rajab, Preparation, in vitro, ex vivo, and pharmacokinetic study of lasmiditan as intranasal nanoemulsion-based in situ gel, Pharmaceutical Nanotechnology, 12, (2024). doi: https://doi.org/10.2174/0122117385285009231222072303
18. D. A. Gaber, M. A. Alnwiser, N. L. Alotaibi, R. A. Almutairi, S. S. Alsaeed, S. A. Abdoun, et al., Design and optimization of ganciclovir solid dispersion for improving its bioavailability, Drug Delivery, 29(1), 1836–47 (2022). doi: https://doi.org/10.1080/10717544.2022.2083723
19. W. Xu, P. Ling, T. Zhang, Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs, Journal of Drug Delivery, 2013(1), 340315 (2013). doi: https://doi.org/10.1155/2013/340315
20. R. N. Shamma, M. Basha, Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation, Powder Technology, 237, 406–14 (2013). doi: https://doi.org/10.1016/j.powtec.2012.12.038
21. V. Nekkanti, Z. Wang, G. V. Betageri, Pharmacokinetic evaluation of improved oral bioavailability of valsartan: Proliposomes versus self-nanoemulsifying drug delivery system, AAPS PharmSciTech, 17(4), 851–862 (2016). doi: https://doi.org/10.1208/s12249-015-0388-8
22. M. Linn, E. M. Collnot, D. Djuric, K. Hempel, E. Fabian, K. Kolter, et al., Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo, European Journal of Pharmaceutical Sciences, 45(3), 336–43 (2012). doi: https://doi.org/10.1016/j.ejps.2011.11.025
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13