Publicado
Incorrect determination of lower limit of quantification (LLOQ) of analytical methods
Determinación incorrecta del límite inferior de cuantificación (LIDC) de los métodos analíticos
Determinação incorreta do limite inferior de quantificação (LIDQ) dos métodos analíticos
DOI:
https://doi.org/10.15446/rcciquifa.v54n1.117696Palabras clave:
Analytical method, FDA, LLOQ, LOD, LOQ (en)Método analítico, Administración de Alimentos y Medicamentos, LIDC, LDD, LDC (es)
Método analítico, FDA, LIDQ, LDD, LDQ (pt)
Descargas
Generally, a new analytical method for publication in a scientific journal should report some parameters to claim that the technique has acceptable validity and has acceptable sensitivity in contrast to other methods. The most commonly reported parameters are limit of detection (LOD), limit of quantification (LOQ), and lower limit of quantification (LLOQ). Recently, LLOQ was selected by researchers to show the lowest concentration level that can be determined. Based on the FDA’s guidelines, some criteria should be considered in reporting LLOQ. In this study, previously reported analytical methods were investigated to check if they considered FDA’s criteria (relative standard deviation of LLOQ, signal-to-noise, and back-calculated error for LLOQ). Besides the FDA guideline’s criteria, the established criteria based on the calibration curve equation and the linear range were calculated to confirm the validity of the reported LLOQ. Analysis of data indicates that the most LLOQ values are not defined based on FDA guidelines, and they do not show the correct sensitivity value of the reported analytical method.
Objetivos: Generalmente, un nuevo método analítico para publicación en una revista científica debe reportar algunos parámetros para afirmar que la técnica tiene una validez y sensibilidad aceptables en contraste con otros métodos. Los parámetros informados con mayor frecuencia son el límite de detección (LDD), el límite de cuantificación (LDC) y el límite inferior de cuantificación (LIDC). Recientemente, los investigadores seleccionaron LIDC para mostrar el nivel de concentración más bajo que se puede determinar. Según las pautas de la FDA, se deben tener en cuenta algunos criterios al informar el LIDC. Métodos: En este estudio, se investigaron los métodos analíticos informados previamente para verificar si consideraban los criterios de la FDA (desviación estándar relativa del LIDC, relación señal-ruido y error retrocalculado para el LIDC). Además de los criterios de las directrices de la FDA, se calcularon los criterios establecidos basados en la ecuación de la curva de calibración y el rango lineal para confirmar la validez del LIDC informado. Resultados: El análisis de datos indica que la mayoría de los valores LIDC no están definidos según las pautas de la FDA y no muestran el valor de sensibilidad correcto del método analítico informado. Conclusiones: Considerando que todos los criterios recomendados para LIDC son necesarios para la correcta determinación de la sensibilidad y rango lineal de los métodos analíticos.
Objetivos: Geralmente, um novo método analítico para publicação em um periódico científico deve relatar alguns parâmetros para afirmar que a técnica tem validade e sensibilidade aceitável em contraste com outros métodos. Os parâmetros mais comumente relatados são limite de detecção (LDD), limite de quantificação (LDQ) e limite inferior de quantificação (LIDQ). Recentemente, o LIDQ foi selecionado por pesquisadores para mostrar o menor nível de concentração que pode ser determinado. Com base nas diretrizes do FDA, alguns critérios devem ser considerados ao relatar o LIDQ. Métodos: Neste estudo, métodos analíticos relatados anteriormente foram investigados para verificar se eles consideravam os critérios do FDA (desvio padrão relativo do LIDQ, relação sinal-ruído e erro retrocalculado para LIDQ). Além dos critérios da diretriz da FDA, os critérios estabelecidos com base na equação da curva de calibração e na faixa linear foram calculados para confirmar a validade do LIDQ relatado. Resultados: A análise dos dados indica que a maioria dos valores de LIDQ não são definidos com base nas diretrizes do FDA e não mostram o valor de sensibilidade correto do método analítico relatado. Conclusões: Considerando todos os critérios recomendados para LIDQ, é necessário determinar corretamente a sensibilidade e a faixa linear dos métodos analíticos.
Referencias
1. Uhrovčík J. Strategy for determination of LOD and LOQ values - Some basic aspects. Talanta. 2014;119:178-80.
2. Bansal S, DeStefano A. Key elements of bioanalytical method validation for small molecules. AAPS Journal. 2007;9(1).
3. Kaza M, Karaźniewicz-Łada M, Kosicka K, Siemiątkowska A, Rudzki PJ. Bioanalytical method validation: new FDA guidance vs. EMA guideline. Better or worse? J Pharm Biomed Anal. 2019;165:381-5.
4. Ershadi S, Shayanfar A. Are LOD and LOQ reliable parameters for sensitivity evaluation of spectroscopic methods? J AOAC Int. 2018;101(4):1212-3.
5. Shayanfar A, Ershadi S. Developing new criteria for validity evaluation of analytical methods. J AOAC Int. 2019;102(6):1908-16.
6. Bioanalytical Method Validation, https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. 2018.
7. Shayanfar A. Beware of bar charts for plotting calibration curves for analytical method development. J AOAC Int. 2020;103(5):1424-5.
8. Shayanfar A. A Critical Issue in Calibration Curve with Logarithmic Scale. ImmunoAnalysis. 2021;1(1):9-.
9. Jouyban A, Farajzadeh MA, Khoubnasabjafari M, Jouyban-Gharamaleki V, Afshar Mogaddam MR. Derivatization and deep eutectic solvent-based air–assisted liquid–liquid microextraction of salbutamol in exhaled breath condensate samples followed by gas chromatography-mass spectrometry. J Pharm Biomed Anal. 2020;191.
10. Zhu X. A linear validation method of analytical procedures based on the double logarithm function linear fitting. Anal Chim Acta. 2024;1310.
11. Chen X, Wang X, Ma L, Fang S, Li J, Boadi EO, et al. The network pharmacology integrated with pharmacokinetics to clarify the pharmacological mechanism of absorbed components from Viticis fructus extract. J Ethnopharmacol. 2021;278.
12. Qasrawi DO, Boyd JM, Sadrzadeh SMH. Measuring steroids from dried blood spots using tandem mass spectrometry to diagnose congenital adrenal hyperplasia. Clin Chim Acta. 2021;520:202-7.
13. Mohamed MK, Takyi-Williams J, Baudot B, Grobler A. Development and validation of a LC-HRMS method for the quantification of cannabinoids and their metabolites in human plasma. Eur J Pharm Sci. 2021;159.
14. Wang X, Lei H, Qi X, Guo X, Xu X, Zu X, et al. Simultaneous determination of five bioactive components of XiaoJin Capsule in normal and mammary gland hyperplasia rat plasma using LC–MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr. 2021;35(3).
15. Gu J, Wang J, Krishna A, Xu L, Stewart S, Wang Y, et al. Simultaneous quantification of dexamethasone and 6β-hydroxydexamethasone in rabbit plasma, aqueous and vitreous humor, and retina by UHPLC-MS/MS. Bioanalysis. 2021;13(13):1051-62.
16. Husain A, Riyazuddin M, Katekar R, Verma S, Syed AA, Singh P, et al. Herb–drug interaction studies of ethanolic extract of Cassia occidentalis L. coadministered with acetaminophen, theophylline, omeprazole, methotrexate and methylprednisolone. Phytomedicine Plus. 2021;1(1).
17. Jayaraj RL, Narchi H, Subramanian R, Yuvaraju P. Development and validation of LC-MS/MS method for quantification of ATP, ADP and AMP in dried blood spot, liver and brain of neonate mice pups. Results Chem. 2021;3.
18. Yuan B, Lyu W, Dinssa FF, Simon JE, Wu Q. Free amino acids in African indigenous vegetables: Analysis with improved hydrophilic interaction ultra-high performance liquid chromatography tandem mass spectrometry and interactive machine learning. J Chromatogr A. 2021;1637.
19. Chen F, Cheng Z, Peng Y, Wang Z, Huang C, Liu D, et al. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay for simultaneous quantification of aldosterone, renin activity, and angiotensin II in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1179.
20. Huang S, Zhang Y, Zhang Y, Liu J, Liu Z, Wang X. Establishment of LC-MS/MS method for determination of aloperine in rat plasma and its application in preclinical pharmacokinetics. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1173.
21. Nalbant D, Reeder JA, Li P, O'Sullivan CT, Rogers WK, An G. Development and validation of a simple and sensitive LC-MS/MS method for quantification of ampicillin and sulbactam in human plasma and its application to a clinical pharmacokinetic study. J Pharm Biomed Anal. 2021;196.
22. Guo W, Shi Z, Zhang J, Zeng T, He Y, Cai Z. Analysis of aristolochic acid I in mouse serum and tissues by using magnetic solid-phase extraction and UHPLC-MS/MS. Talanta. 2021;235.
23. Rogachev AD, Putilova VP, Zaykovskaya AV, Yarovaya OI, Sokolova AS, Fomenko VV, et al. Biostability study, quantitation method and preliminary pharmacokinetics of a new antifilovirus agent based on borneol and 3-(piperidin-1-yl)propanoic acid. J Pharm Biomed Anal. 2021;199.
24. Al‐nimry SS, Khanfar MS. Validation of an rp‐hplc method for the determination of asenapine maleate in dissolution media and application to study in vitro release from co‐crystals. Sci Pharm. 2021;89(1).
25. Xu X, Wang W, Chen Y, Zhang Q, Li B, Zhong Y, et al. Simultaneous Determination of Ten Bioactive Components from Shenling Baizhu San in Rat Plasma by UHPLC-MS/MS: Application to a Comparative Pharmacokinetic Study in Normal and Two Models of Ulcerative Colitis Rats. Evid-Based Complement Altern Med. 2021;2021.
26. Du Q, Zhang Y, Wang J, Liu B. Simultaneous determination and quantitation of hypolipidemic drugs in fingerprints by UPLC-Q-TRAP/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1175.
27. Xu X, Luo S, Yang Q, Wang Y, Li W, Lin G, et al. Development and validation of the quantitative determination of avapritinib in rat plasma by a bioanalytical method of UPLC-MS/MS. Arab J Chem. 2021;14(6).
28. Rashid F, Baghla R, Kale P, Shah M, Malakar D, Pillai M. Absolute Quantification of Follicle Stimulating Hormone (FSH) Using Its Signature Peptides and Enzymatic Digestion in Human Serum by UPLC/LC–MS/MS. Chromatographia. 2021;84(8):793-802.
29. Hou MZ, Chen LL, Chang C, Zan JF, Du SM. Pharmacokinetic and tissue distribution study of eight volatile constituents in rats orally administrated with the essential oil of Artemisiae argyi Folium by GC–MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1181.
30. Demurtas A, Pescina S, Nicoli S, Santi P, Ribeiro de Araujo D, Padula C. Validation of a HPLC-UV method for the quantification of budesonide in skin layers. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1164.
31. Thirukumaran M, Singh V, Arao Y, Fujito Y, Nishimura M, Ogura T, et al. Solid-phase microextraction- probe electrospray ionization devices for screening and quantitating drugs of abuse in small amounts of biofluids. Talanta. 2021;231.
32. Lu M, Lu X, Yu Z, Wen C. Determination and pharmacokinetics of calycanthine in rat plasma by UPLC-MS/MS. Acta Chromatogr. 2021;33(1):91-5.
33. Sai PN, Venkateswarlu BS, Kumudhavalli MV, Muruganantham V. Bio-analytical method development and validation for the simultaneous estimation of decitabine and cedazuridine in human plasma using lc-ms/ms. Int J Appl Pharm. 2021;13(5):257-62.
34. Lipska K, Gumieniczek A, Pietraś R, Filip AA. Hplc-uv and gc-ms methods for determination of chlorambucil and valproic acid in plasma for further exploring a new combined therapy of chronic lymphocytic leukemia. Molecules. 2021;26(10).
35. Girme A, Pawar S, Ghule C, Shengule S, Saste G, Balasubramaniam AK, et al. Bioanalytical method development and validation study of neuroprotective extract of kashmiri saffron using ultra-fast liquid chromatography-tandem mass spectrometry (Uflc-ms/ms): In vivo pharmacokinetics of apocarotenoids and carotenoids. Molecules. 2021;26(6).
36. Aydin E, Drotleff B, Noack H, Derntl B, Lämmerhofer M. Fast accurate quantification of salivary cortisol and cortisone in a large-scale clinical stress study by micro-UHPLC-ESI-MS/MS using a surrogate calibrant approach. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1182.
37. Mallock N, Rabenstein A, Laux P, Rüther T, Hutzler C, Parr MK, et al. Rapid, sensitive, and reliable quantitation of nicotine and its main metabolites cotinine and trans-3′-hydroxycotinine by LC-MS/MS: Method development and validation for human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1179.
38. Alqahtani AS, Herqash RN, Alqahtani F, Ahamad SR, Nasr FA, Noman OM. Gc-ms method for quantification and pharmacokinetic study of four volatile compounds in rat plasma after oral administration of commiphora myrrh (Nees) engl. resin and in vitro cytotoxic evaluation. Separations. 2021;8(12).
39. Yamaguchi A, Miyaguchi H. A screening method for cyanide in blood by dimethoxytriazinyl derivatization-GC/MS. J Chromatogr Sci. 2021;59(1):1-6.
40. Li S, Lu Z, Jiao L, Zhang R, Hong Y, Aa J, et al. Quantitative determination of D4-cystine in mice using LC-MS/MS and its application to the assessment of pharmacokinetics and bioavailability. J PharmaceutAnaly. 2021;11(5):580-7.
41. Kwon MH, Lee DY, Kang HE. Development and validation of an lc-ms/ms method for quantification of the novel antibacterial candidate da-7010 in plasma and application to a preclinical pharmacokinetic study. Pharmaceuticals. 2021;14(2):1-10.
42. Zhong ZJ, Yao ZP, Shi ZQ, Liu YD, Liu LF, Xin GZ. Measurement of Intracellular Nitric Oxide with a Quantitative Mass Spectrometry Probe Approach. Anal Chem. 2021;93(24):8536-43.
43. Meng T, Kosmider L, Chai G, Moothedathu Raynold AA, Pearcy AC, Qin B, et al. LC-MS/MS method for simultaneous quantification of dexamethasone and tobramycin in rabbit ocular biofluids. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1170.
44. Liu M, Yang H, Hu J, Shen B, Xiang P, Qiang H, et al. Analysis of 28 hair samples from users of the hallucinogenic beverage ayahuasca. Forensic Sci Int. 2021;323.
45. Yuan G, Li R, Zhao Q, Kong X, Wang Y, Wang X, et al. Simultaneous determination of paraquat and diquat in human plasma by HPLC-DAD: Its application in acute poisoning patients induced by these two herbicides. J Clin Lab Anal. 2021;35(3).
46. Ehsani M, Soleymani J, Hasanzadeh M, Vaez-Gharamaleki Y, Khoubnasabjafari M, Jouyban A. Sensitive monitoring of doxorubicin in plasma of patients, MDA-MB-231 and 4T1 cell lysates using electroanalysis method. J Pharm Biomed Anal. 2021;192.
47. Elawady T, Khedr A, El-Enany N, Belal F. HPLC-UV determination of erdafitinib in mouse plasma and its application to pharmacokinetic studies. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1171.
48. Hailat M, Al-Ani I, Hamad M, Zakareia Z, Abu Dayyih W. Development and validation of a method for quantification of favipiravir as covid-19 management in spiked human plasma. Molecules. 2021;26(13).
49. Baymeeva NV, Platova AI, Miroshnichenko II, Belovolov AY, Gladkikh VD, Tatarinov AM. High Performance Liquid Chromatography/Mass Spectrometry Method for Quantitative Determination of Fludrocortisone in Human Blood Plasma. Pharm Chem J. 2021;55(5):510-5.
50. Yaman ME, Atila A, Akman TC, Albayrak M, Kadioglu Y, Halici Z. A sensitive UPLC-MS/MS method for the determination of flurbiprofen in rat plasma: Application to real sample. J Chromatogr Sci. 2021;59(6):502-9.
51. Zhao L, Wang S, Huang X, Fan Y, Xue Z, Yang D, et al. Pharmacokinetic and Bioavailability Studies of Galgravin after Oral and Intravenous Administration to Rats Using HPLC-MS/MS Method. BioMed Res Int. 2021;2021.
52. Du LY, Jiang T, Wei K, Zhu S, Shen YL, Ye P, et al. Simultaneous Quantification of Four Ginsenosides in Rat Plasma and Its Application to a Comparative Pharmacokinetic Study in Normal and Depression Rats Using UHPLC-MS/MS. J Anal Methods Chem. 2021;2021.
53. Tanaka K, Sugiyama H, Morinaga H, Onishi A, Tanabe K, Uchida HA, et al. Late-onset renal variant Fabry disease with R112H mutation and mild increase in plasma globotriaosylsphingosine: a case report. Front Med. 2024;11.
54. Nasrollahpour H, Isildak I, Rashidi MR, Hashemi EA, Naseri A, Khalilzadeh B. Ultrasensitive bioassaying of HER-2 protein for diagnosis of breast cancer using reduced graphene oxide/chitosan as nanobiocompatible platform. Cancer Nanotechnol. 2021;12(1).
55. Hu X, Bian X, Gu WY, Sun B, Gao X, Wu JL, et al. Stand out from matrix: Ultra-sensitive LC−MS/MS method for determination of histamine in complex biological samples using derivatization and solid phase extraction. Talanta. 2021;225.
56. Tanna N, Mullin LG, Rainville PD, Wilson ID, Plumb RS. Improving LC/MS/MS-based bioanalytical method performance and sensitivity via a hybrid surface barrier to mitigate analyte – Metal surface interactions. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1179.
57. Shaban M, Ghaffary S, Hanaee J, Karbakhshzadeh A, Soltani S. Synthesis and characterization of new surface modified magnetic nanoparticles and application for the extraction of letrozole from human plasma and analysis with HPLC-fluorescence. J Pharm Biomed Anal. 2021;193.
58. Kim HY, Ruiter E, Jongedijk EM, Ak HK, Marais BJ, Pk B, et al. Saliva-based linezolid monitoring on a mobile UV spectrophotometer. J Antimicrob Chemother. 2021;76(7):1786-92.
59. Chen Y, Xu CF, Stanley B, Evangelist G, Brinkmann A, Liu S, et al. A Highly Sensitive LC-MS/MS Method for Targeted Quantitation of Lipase Host Cell Proteins in Biotherapeutics. J Pharm Sci. 2021;110(12):3811-8.
60. Jîtcă G, Fogarasi E, Ősz BE, Vari CE, Tero-Vescan A, Miklos A, et al. A simple hplc/dad method validation for the quantification of malondialdehyde in rodent’s brain. Molecules. 2021;26(16).
61. Jin W, Gui J, Li G, Jiang F, Han D. High-throughput quantitation of trace level melatonin in human milk by on-line enrichment liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2021;1176.
62. Zhang J, Si H, Sun J, Lv K, Yan B, Li B, et al. Determination of myrislignan levels in BALB/c mouse plasma by LC-MS/MS and a comparison of its pharmacokinetics after oral and intraperitoneal administration. BMC Vet Res. 2021;17(1).
63. Li J, Hu Y, Wu Y, Feng T, Wen C, Jiang X. Pharmacokinetics of palmatine in rat after oral and intravenous administration by UPLC-MS/ MS. Acta Chromatogr. 2021;33(1):25-9.
64. Kim H, Choi Y, An Y, Jung YR, Lee JY, Lee HJ, et al. Development of p-coumaric acid analysis in human plasma and its clinical application to PK/PD study. J Clin Med. 2021;10(1):1-11.
65. Moradi M, Soleymani J, Tayebi-Khosroshahi H, Khoubnasabjafari M, Jouyban A. Simple determination of p-cresol in plasma samples using fluorescence spectroscopy technique. Iran J Pharm Res. 2021;20(2):68-78.
66. Pyo J. Rapid evaluation method for propofol abusing with hair by using centrifugal filter and liquid chromatography-tandem mass spectrometry. Curr Pharm Anal. 2021;17(9):1171-7.
67. Hefnawy M, Al-Majed A, Alrabiah H, Algrain N, Mohammed M, Jardan YB. Rapid and sensitive LC-MS/MS method for the enantioanalysis of verapamil in rat plasma using superficially porous silica isopropyl-cyclofructan 6 chiral stationary phase after SPE: Application to a stereoselective pharmacokinetic study. J Pharm Biomed Anal. 2021;201.
68. Lun J, Zhang W, Zhao Y, Song Y, Guo X. Enantiomeric Separation of Dioxopromethazine and its Stereoselective Pharmacokinetics in Rats by HPLC-MS/MS. J Pharm Sci. 2021;110(8):3082-90.
69. Prudhvi SN, Venkateswarlu BS, Kumudhavalli MV, Muruganantham V. Novel stability indicating LC-MS/MS method for the simultaneous estimation of Remogliflozin etabonate and Vildagliptin human plasma. J Med Pharma Sci. 2021;10(5):3718-25.
70. Shen Y, Meng D, Chen F, Jiang H, Hu L, Zhou Y, et al. Determination of sarecycline by UPLC-MS/MS and its application to pharmacokinetic study in rats. Acta Chromatogr. 2021;33(3):228-33.
71. Nasrollahpour H, Mahdipour M, Isildak I, Rashidi MR, Naseri A, Khalilzadeh B. A highly sensitive electrochemiluminescence cytosensor for detection of SKBR-3 cells as metastatic breast cancer cell line: A constructive phase in early and precise diagnosis. Biosens Bioelectron. 2021;178.
72. Chen M, Jiang Q, Zhang M, Chen S, Lou J, Chen Y, et al. Establishment of quantitative methodology for sophoridine analysis and determination of its pharmacokinetics and bioavailability in rat. Drug Dev Ind Pharm. 2021;47(5):741-7.
73. Mowaka S, Ashoush N, Tadros MM, Ayoub BM. Investigation of Pharmacokinetic Parameters of Trelagliptin in Egyptian Volunteers Using Sensitive LC-MS/MS: A Comparative Study with a Japanese Population. J Anal Methods Chem. 2021;2021.
74. Mahmoudpour M, Saadati A, Hasanzadeh M, Kholafazad-kordasht H. A stretchable glove sensor toward rapid monitoring of trifluralin: A new platform for the on-site recognition of herbicides based on wearable flexible sensor technology using lab-on-glove. J Mol Recogn. 2021;34(10).
75. Wang MJ, Zhao YH, Fan C, Wang YJ, Wang XQ, Qiu XJ, et al. Development of an uplc-ms/ms method for the quantitative analysis of upadacitinib in beagle dog plasma and pharmacokinetics study. Drug Des Dev Ther. 2021;15:4167-75.
76. Parsons TL, Kryszak LA, Marzinke MA. Development and validation of assays for the quantification of β-D-N4-hydroxycytidine in human plasma and β-D-N4-hydroxycytidine-triphosphate in peripheral blood mononuclear cell lysates. J Chromatogr B Anal Technol Biomed Life Sci. 2021;1182.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13