Publicado
Elaboración de una barra de cacao (Theobroma cacao) naturalmente endulzada y su efecto hipoglucemiante
Preparation of a cocoa bar (Theobroma cacao) naturally sweetened with a hypoglycemic effect.
Produção de uma barra de cacau naturalmente adoçada (Theobroma cacao) e seu efeito hipoglicemiante
DOI:
https://doi.org/10.15446/rcciquifa.v54n2.117770Palabras clave:
diabetes, hypoglycemic, hyperglycemia, natural sweetener, cocoa (es)diabetes, hipoglucemiante, hiperglicemia, edulcorante natural, cacao (en)
diabetes, hipoglicêmico, hiperglicemia, adoçante natural, cacau (pt)
Descargas
El cacao (Theobroma cacao), contiene abundantes flavonoides que son responsables de la reducción del estrés oxidativo. Las barras de chocolate con una mezcla de cacao superior al 45% son buenas para la salud humana debido a su alto contenido de antioxidantes. El uso de modelos que estudian el efecto del aumento de la concentración de glucosa en sangre ha permitido establecer que los procesos oxidativos están involucrados en la patogénesis, complicaciones y mal pronóstico de la diabetes mellitus. Se ha entendido que, la sobreproducción de especies reactivas de oxígeno debido al aumento de la actividad de la cadena transportadora de electrones, la vía del sorbitol, la autooxidación de la glucosa, la glicación de proteínas y la reducción de las defensas antioxidantes, generan un estado prooxidante que causa daño oxidativo a ácidos nucleicos, proteínas, carbohidratos y lípidos, contribuyendo al desarrollo de la diabetes. Objetivo: Evaluar el efecto hipoglucemiante de barras de chocolate elaboradas con cacao (Theobroma cacao) endulzadas con diferentes edulcorantes naturales en un modelo de ratas diabéticas. Métodos: Se elaboraron barras de cacao usando dos concentraciones; 50% y 85% endulzadas con algarrobina y yacón. Estas barras fueron evaluadas organoléptica y microbiológicamente. Se indujo diabetes experimental en ratas inyectando aloxano monohidratado (100 mg/kg) por vía intraperitoneal y se evaluó su efecto hipoglicemiante. Resultados: Las barras de cacao elaboradas al 50% y 85% demostraron buenas características organolépticas e inocuidad microbiológica. Se evidenció mayor efecto hipoglicemiante con las barras de cacao de mayor concentración. Conclusiones: Se ha podido evidenciar un efecto hipoglicemiante en las ratas tratadas con las barras de cacao al 85% endulzadas con algarrobina.
Cocoa (Theobroma cacao) contains abundant flavonoids responsible for reducing oxidative stress. Chocolate bars with a cocoa mix of more than 45% are good for human health due to their high antioxidant content. Using models studying the effect of increased blood glucose concentration has established that oxidative processes are involved in the pathogenesis, complications, and poor prognosis of diabetes mellitus. It has been understood that the overproduction of reactive oxygen species due to increased activity of the electron transport chain, the sorbitol pathway, autoxidation of glucose, glycation of proteins, and reduction of antioxidant defenses generate a pro-oxidant state that causes oxidative damage to nucleic acids, proteins, carbohydrates, and lipids, contributing to the development of diabetes. Objective: To evaluate the hypoglycemic effect of chocolate bars made with cocoa (Theobroma cacao) sweetened with different natural sweeteners in a diabetic rat model. Methods: Cocoa bars were elaborated using 50% and 85% concentrations, sweetened with algarrobin and yacon. These bars were evaluated organoleptically and microbiologically. Experimental diabetes was induced in rats by injecting alloxan monohydrate (100 mg/kg) intraperitoneally, and the hypoglycemic effect was assessed. Results: Cocoa bars prepared at 50% and 85% showed good organoleptic characteristics and microbiological safety. A more significant hypoglycemic effect was evidenced with the cocoa bars of higher concentration. Conclusions: A hypoglycemic effect was evidenced in rats treated with the 85% cocoa bars sweetened with algarrobin.
Introdução: O cacau (Theobroma cacao) contém abundantes flavonoides que são responsáveis por reduzir o estresse oxidativo. Barras de chocolate com teor de cacau superior a 45% são boas para a saúde humana devido ao seu alto teor de antioxidantes. A utilização de modelos que estudam o efeito do aumento da concentração de glicose no sangue estabeleceu que processos oxidativos estão envolvidos na patogênese, complicações e mau prognóstico do diabetes mellitus. Entende-se que a superprodução de espécies reativas de oxigênio devido ao aumento da atividade da cadeia de transporte de elétrons, da via do sorbitol, da autoxidação da glicose, da glicação de proteínas e da redução das defesas antioxidantes, gera um estado pró-oxidante que causa danos oxidativos aos ácidos nucleicos, proteínas, carboidratos e lipídios, contribuindo para o desenvolvimento do diabetes. Objetivo: Avaliar o efeito hipoglicemiante de barras de chocolate feitas com cacau (Theobroma cacao) adoçadas com diferentes adoçantes naturais em um modelo de rato diabético. Métodos: Barras de cacau foram produzidas utilizando duas concentrações; 50% e 85% adoçados com alfarroba e yacon. Essas barras foram avaliadas organolepticamente e microbiologicamente. O diabetes experimental foi induzido em ratos pela injeção intraperitoneal de monoidrato de aloxana (100 mg/kg) e seu efeito hipoglicêmico foi avaliado. Resultados: Barras de cacau elaboradas com 50% e 85% apresentaram boas características organolépticas e segurança microbiológica. Um maior efeito hipoglicêmico foi evidente com barras de cacau com maior concentração. Conclusões: Foi observado efeito hipoglicemiante em ratos tratados com barras de cacau 85% adoçadas com alfarroba.
Referencias
1. S.P. Akoa, J.C.D. Kouam, M.L. Ondobo, J.M. Ndjaga, P.F. Djocgoue & P.E. Onomo. Identification of methylxanthines and phenolic compounds by UPLC-DAD-ESI-MS OTOF and antioxidant capacities of beans and dark chocolate bars from three Trinitario× Forastero cocoa (Theobroma cacao L.) hybrids. Journal of Food Research, 10(2), 32–46 (2021). Doi: https://doi.org/10.5539/jfr.v10n2p32
2. C.L. Hii, C.L. Law, S. Suzannah, M. Misnawi & M. Cloke. Polyphenols in cocoa (Theobroma cacao L.). Asian Journal of Food and Agro-Industry, 2(4), 702–722 (2009). URL: https://www.researchgate.net/publication/284800915_Polyphenols_in_cocoa_Theobroma_cacao_L
3. D. Ackar, K.V. Lendić, M. Valek, D. Šubarić, B. Miličević, J. Babić & I. Nedić. Cocoa polyphenols: Can we consider cocoa and chocolate as potential functional food? Journal of Chemistry, 2013(1), 289392 (2013). Doi: https://doi.org/10.1155/2013/289392
4. A.A. Ruzaidi, I. Maleyki, A.G. Amin, H. Nawalyah, H. Muhajir, M.B.S. Pauliena & M.S. Muskinah. Hypoglycaemic properties of Malaysian cocoa (Theobroma cacao) polyphenols-rich extract. International Food Research Journal, 15(3), 305–312 (2011). URL: https://www.researchgate.net/publication/228489998_Hypoglycaemic_Properties_of_Malaysian_Cocoa_Theobroma_Cacao_Polyphenols-Rich_Extract
5. A.M.M. Jalil, A. Ismail, C.P. Pei, M. Hamid & S.H.S. Kamaruddin. Effects of cocoa extract on glucometabolism, oxidative stress, and antioxidant enzymes in obese-diabetic (Ob-db) rats. Journal of Agricultural and Food Chemistry, 56(17), 7877–7884 (2008). Doi: https://doi.org/10.1021/jf8015915
6. I. Cordero-Herrera. Mecanismos de acción de los flavanoles del cacao en las células hepáticas durante la resistencia a la insulina y la diabetes: estudio en cultivos celulares y animales de experimentación. Tesis doctoral. Universidad Complutense de Madrid, 2015; 225 p. URL: https://hdl.handle.net/20.500.14352/26445
7. W.H. Herman & O.B. Crofford. The relationship between diabetic control and complications. En: J. C. Pickup & G. Williams (editores). Textbook of Diabetes. Blackwell Scientific, Oxford, 1997; pp. 41.1–41.11.
8. M.T. Sheehan. Current therapeutic options in type 2 diabetes mellitus: A practical approach. Clinical Medicine and Research, 1(3), 189–200 (2003). Doi: https://doi.org/10.3121/cmr.1.3.189
9. D.Y. Kwon, J.W. Daily III, H.J. Kim & S. Park. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutrition Research, 30(1), 1-13 (2010). Doi: https://doi.org/10.1016/j.nutres.2009.11.004
10. A.M. Gray & P.R. Flatt. Actions of the traditional anti-diabetic plant, Agrimony eupatoria (agrimony): effects on hyperglycaemia, cellular glucose metabolism and insulin secretion. British Journal of Nutrition, 80(1), 109–114 (1998). Doi: https://doi.org/10.1017/s0007114598001834
11. J.S. Kim, C.S. Kwon & K.H. Son. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Bioscience, Biotechnology, and Biochemistry, 64(11), 2458–2461 (2000). Doi: https://doi.org/10.1271/bbb.64.2458
12. L. Medenieks & T. Vasiljevic. Underutilised fish as sources of bioactive peptides with potential health benefits. Food Australia, 60(12), 581–588 (2008).
13. X. Yuan, X. Gu & J. Tang. Optimization of the production of Momordica charantia L. var. abbreviate Ser. protein hydrolysates with hypoglycemic effect using Alcalase. Food Chemistry, 111(2), 340–344 (2008). Doi: https://doi.org/10.1016/j.foodchem.2008.03.070
14. N. Osakabe, M. Yamagishi, C. Sanbongi, M. Natsume, T. Takizawa & T. Osawa. The antioxidative substances in cacao liquor. Journal of Nutritional Science and Vitaminology, 44(2), 313-321 (1998). Doi: https://doi.org/10.3177/jnsv.44.313
15. L.J. Porter, Z. Ma, B.G. Chan. Cacao procyanidins: major flavanoids and identification of some minor metabolites. Phytochemistry, 30(5), 1657–1663 (1991). Doi: https://doi.org/10.1016/0031-9422(91)84228-K
16. A. Ruzaidi, I. Amin, A.G. Nawalyah, M. Hamid & H.A. Faizul. The effect of Malaysian cocoa extract on glucose levels and lipid profiles in diabetic rats. Journal of Ethnopharmacology, 98(1-2), 55-60 (2005). Doi: https://doi.org/10.1016/j.jep.2004.12.018
17. S. Dhingra & S. Jood. Organoleptic and nutritional evaluation of wheat breads supplemented with soybean and barley flour. Food Chemistry, 77(4), 479–488 (2002). Doi: https://doi.org/10.1016/S0308-8146(01)00387-9
18. H. Stone & J.L. Sidel. Introduction to sensory evaluation. Sensory evaluation practices, Academic Press, Cambridge (MA), 2004; pp. 1–19. Doi: https://doi.org/10.1016/B978-0-12-672690-9.X5000-8
19. J. Puma-Champi. Pumaty. URL: https://chocolateriapumatiy.com/5-caracteristicas-del-buen-chocolate/, consultado en mayo de 2023.
20. República del Perú, Ministerio de Salud, Dirección General de Salud Ambiental e Ingeniudiad Alimentaria (Didesa). Norma sanitaria que establece los criterios microbiologicos de calidad sanitaria e inocuidad para los alimentos y bebidas de consumo humano. URL: http://www.digesa.minsa.gob.pe/norma_consulta/actz_615_2003.htm, consultado en abril de 2023.
21. B. Tan. Guidelines on the care and use of animals for scientific purposes. 2nd ed. National Advisory Committee for Laboratory Animal Research, Singapore, 2022; 156 p. URL: https://www.nparks.gov.sg/-/media/naclar-guidelines-(second-edition)_v2.ashx
22. S. Lenzen. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216–226 (2008). Doi: https://doi.org/10.1007/s00125-007-0886-7
23. Nuffield Council on Bioethics. The ethics of research involving animals. The Nuffield Council on Bioethics, London. URL: http://www.nuffieldbioethics.org/, consultado en abril 2025
24. B. Kameswara Rao, M. Kesavulu, R. Giri & Ch. Apparao. Antidiabetic and hypolipidemic effect of Momordica cymbalaria Hook fruit powder in aloxan diabetic rats. Journal of Ethnopharmacology, 67(1), 103–109 (1996). Doi: https://doi.org/10.1016/s0378-8741(99)00004-5
25. W. Margono, M.A. Masuku, N. Albaar & S. Tjokrodiningrat. The effect of cocoa paste percentage of fermented cocoa beans on the sensory characteristic of chocolate bars. Proceedings of the 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019), 277–280 (2020). Doi: https://doi.org/10.2991/aer.k.200325.055
26. L.R. Vieira, P. Efraim, D.V. Walle, N. Clercq & K. Dewettinck. Influence of Brazilian geographic region and organic agriculture on the composition and crystallization properties of cocoa butter. Journal of the American Oil Chemists’ Society, 92(11-12), 1579–1592 (2015). Doi: http://doi.org/10.1007/s11746-015-2728-y
27. A. Permata & N. Hidayah. Analysis of the effect of fermentation duration on the organoleptic properties of dried cocoa beans (Theobroma cacao L.) at Nglanggeran Agricultural Technology Park. Journal of Halal Science and Research, 5(2), 182–190 (2024). Doi: http://doi.org/10.12928/jhsr.v5i2.9957
28. R.M. dos Santos, N.M.d.J. Silva, F.G. Moura, L.d.F.H. Lourenço, J.N.S.d. Souza & C.L. Sousa de Lima. Analysis of the sensory profile and physical and physicochemical characteristics of amazonian cocoa (Theobroma cacao L.) beans produced in different regions. Foods, 13(14), 2171 (2024). Doi: https://doi.org/10.3390/foods13142171
29. P.C. Chikezie. Short-term capacities of ethanolic Theobroma cacao bean extract to ameliorate oxidative stress, hyperglycemia and dyslipidemia in alloxan-induced diabetic rats. Journal of Investigational Biochemistry, 4(1), 23–29 (2015). URL: https://www.researchgate.net/publication/276430921_Short-Term_Capacities_of_Ethanolic_Theobroma_Cacao_Bean_Extract_to_Ameliorate_Oxidative_Stress_Hyperglycemia_and_Dyslipidemia_in_Alloxan-Induced_Diabetic_Rats
30. M.E. Jaramillo-Flores. Cocoa flavanols: natural agents with attenuating effects on metabolic syndrome risk factors. Nutrients, 11(4), 751 (2019). Doi: https://doi.org/10.3390/nu11040751
31. L. Bai, X. Li, L. He, Y. Zheng, H. Lu, J. Li, et al. Antidiabetic potential of flavonoids from traditional Chinese medicine: A review. The American Journal of Chinese Medicine, 47(5), 933–957 (2019). Doi: https://doi.org/10.1142/S0192415X19500496
32. J.S. Luzón-Atarama. Índice glicémico de la algarrobina y harina derivados de la vaina del Prosopis pallida (algarrobo) en ratas. Tesis de pregrado. Universidad Nacional Mayor de San Marcos, Lima, 2021; 52 p. URL: https://cybertesis.unmsm.edu.pe/backend/api/core/bitstreams/68b15587-b5fe-43ef-88c0-126ec02ca628/content
33. R. Kababie-Ameo, G.M. Rabadán-Chávez, N. Vázquez-Manjarrez & G. Gutiérrez-Salmeán. Potential applications of cocoa (Theobroma cacao) on diabetic neuropathy: mini review. Frontiers in Bioscience-Landmark, 27(2), 57 (2022). Doi: https://doi.org/10.31083/j.fbl2702057
34. W.E. Olooto, O.A. Ogundahunsi, T.A. Banjo, B.A. Salau, A.A. Amballi, E.O. Ajani & O.A. Onakomaya. Hypoglycemic and modifying effect of aqueous cocoa powder extract on diabetic-induced histologic changes in the pancreas of alloxan diabetic rats. Annals of Biological Sciences, 2(1), 10–18 (2014). URL: https://www.researchgate.net/publication/273322266_Hypoglycemic_and_modifying_effect_of_aqueous_cocoa_powder_extract_on_diabetic-induced_histologic_changes_in_the_pancreas_of_alloxan_diabetic_rats
35. I. Amin, H.A. Faizul & R. Azli. Effect of cocoa powder extract on plasma glucose levels in hyperglycaemic rats. Nutrition & Food Science, 34(3), 116–121 (2004). Doi: https://doi.org/10.1108/00346650410536737
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




