Publicado

2025-09-25

Drug design and discovery with bioinformatics tools

Diseño y descubrimiento de fármacos con herramientas bioinformáticas

Projeto e descoberta de fármacos com ferramentas de bioinformática

Palabras clave:

bioinformatics, target protein, ligand binding site, biomolecule interaction, pharmacophore, docking, pharmacology (en)
bioinformática, proteínas diana, sitio de unión de ligando, interacción biomolecular, farmacóforo, acoplamiento, farmacología (es)
bioinformática, proteína-alvo, sítio de ligação de ligantes, interação com biomoléculas, farmacóforo, docking, farmacologia (pt)

Descargas

Autores/as

  • Amjad I. Oraibi AL-Manara College for medical Sciences University
  • Ahmed Mohammed Zheoat AL-Manara College for medical Sciences University
  • Hayder Naji Sameer Thiqar Health Directorate
  • Mohammed Ayad Alboreadi AL-Manara College for medical Sciences University
  • Hayder M. Abdulhamza al-manara

Context: Bioinformatics is a combination of different fields including computer science, biology, information technology and statistics which is used to analyze and interpret the biological data. It is used to design and discover novel drugs through biological data analysis and potential target identification. With increasing drug resistance among bacterial species, there is a need to develop new drugs. Aims: However, the drug discovery procedure is laborious, expensive and time-consuming. The new drug identification consists of various steps including target identification, target protein structure analysis, potential drug candidate identification, detecting the safety and efficacy of drug, optimizing them and finally validating the drug. Bioinformatics has a vital role in all these steps. Bioinformatics has emerged as a powerful tool in the field of drug design and discovery, enabling the rapid identification of potential drug targets, optimization of lead compounds, and prediction of drug interactions. For instance, analysis of protein sequences and genetic data enables target identification. Methods: Once the target protein is recognized, its structure can be investigated using bioinformatics tools. Identification of potential ligand binding sites allows for screening of compound databases to find drug candidates. A review of the relevant literature highlights that the identification of potential ligand binding sites allows for screening of compound databases to find drug candidates. Simulations of target protein and biomolecule interactions aid in predicting drug safety and efficacy. Results: Bioinformatics is utilized for drug optimization to improve safety and efficacy. Recently pharmacophore and molecular docking process are used for screening of thousands of candidate molecules to a few promising leads. In this paper, drug design and discovery has been done with the use of bioinformatics tool in the field of network pharmacology. This paper reviews the application of bioinformatics tools within the field of network pharmacology, focusing on methodologies for drug design and discovery. It aims to clarify existing approaches and propose future directions in the context of drug development, rather than suggesting that original drug design and discovery work has been conducted by the authors.

Contexto: La bioinformática es una combinación de diferentes campos, como la informática, la biología, las tecnologías de la información y la estadística, que se utiliza para analizar e interpretar datos biológicos. Se utiliza para diseñar y descubrir nuevos fármacos mediante el análisis de datos biológicos y la identificación de posibles dianas. Debido al aumento de la resistencia a los fármacos en las especies bacterianas, surge la necesidad de desarrollar nuevos fármacos. Objetivos: Sin embargo, el proceso de descubrimiento de fármacos es laborioso, costoso y requiere mucho tiempo. La identificación de nuevos fármacos consta de varios pasos: la identificación de la diana, el análisis de la estructura de la proteína diana, la identificación de posibles candidatos a fármacos, la detección de la seguridad y la eficacia de los fármacos, su optimización y, finalmente, la validación del fármaco. La bioinformática desempeña un papel fundamental en todos estos pasos. La bioinformática se ha convertido en una herramienta poderosa en el campo del diseño y descubrimiento de fármacos, permitiendo la rápida identificación de posibles dianas farmacológicas, la optimización de compuestos clave y la predicción de interacciones farmacológicas. Por ejemplo, el análisis de secuencias de proteínas y datos genéticos permite la identificación de la diana. Métodos: Una vez reconocida la proteína diana, se puede investigar su estructura mediante herramientas bioinformáticas. La identificación de posibles sitios de unión de ligandos permite el cribado de bases de datos de compuestos para encontrar fármacos candidatos. Una revisión de la literatura relevante destaca que la identificación de posibles sitios de unión de ligandos permite el cribado de bases de datos de compuestos para encontrar fármacos candidatos. Las simulaciones de proteínas diana e interacciones biomoleculares ayudan a predecir la seguridad y eficacia de los fármacos. Resultados: La bioinformática se utiliza para la optimización de fármacos con el fin de mejorar la seguridad y eficacia. Recientemente, el farmacóforo y el proceso de acoplamiento molecular se han utilizado para el cribado de miles de moléculas candidatas hasta encontrar unas pocas líneas prometedoras. En este artículo, se ha realizado el diseño y descubrimiento de fármacos mediante herramientas bioinformáticas en el campo de la farmacología de redes. Este artículo revisa la aplicación de herramientas bioinformáticas en el campo de la farmacología de redes, centrándose en las metodologías para el diseño y descubrimiento de fármacos. Su objetivo es aclarar los enfoques existentes y proponer futuras direcciones en el contexto del desarrollo de fármacos, en lugar de sugerir que el trabajo original de diseño y descubrimiento de fármacos haya sido realizado por los autores.

Contexto: A bioinformática é uma combinação de diferentes áreas, incluindo ciência da computação, biologia, tecnologia da informação e estatística, utilizada para analisar e interpretar dados biológicos. É utilizada para projetar e descobrir novos fármacos por meio da análise de dados biológicos e da identificação de potenciais alvos. Com o aumento da resistência a fármacos entre espécies bacterianas, surge a necessidade de desenvolver novos fármacos. Objetivos: No entanto, o procedimento de descoberta de fármacos é trabalhoso, caro e demorado. A identificação de novos fármacos consiste em várias etapas, incluindo a identificação do alvo, a análise da estrutura da proteína alvo, a identificação de potenciais candidatos a fármacos, a detecção da segurança e eficácia dos fármacos, a otimização dos mesmos e, finalmente, a validação do fármaco. A bioinformática desempenha um papel vital em todas essas etapas. A bioinformática emergiu como uma ferramenta poderosa no campo do projeto e descoberta de fármacos, permitindo a rápida identificação de potenciais alvos, a otimização de compostos líderes e a previsão de interações medicamentosas. Por exemplo, a análise de sequências de proteínas e dados genéticos permite a identificação do alvo. Métodos: Uma vez reconhecida a proteína alvo, sua estrutura pode ser investigada utilizando ferramentas de bioinformática. A identificação de potenciais sítios de ligação de ligantes permite a triagem de bancos de dados de compostos para encontrar candidatos a fármacos. Uma revisão da literatura relevante destaca que a identificação de potenciais sítios de ligação de ligantes permite a triagem de bancos de dados de compostos para encontrar candidatos a fármacos. Simulações de interações entre proteínas-alvo e biomoléculas auxiliam na previsão da segurança e eficácia de fármacos. Resultados: A bioinformática é utilizada na otimização de fármacos para melhorar a segurança e a eficácia. Recentemente, o farmacóforo e o processo de docking molecular têm sido utilizados para a triagem de milhares de moléculas candidatas a algumas pistas promissoras. Neste artigo, o projeto e a descoberta de fármacos foram realizados com o uso de ferramentas de bioinformática na área de farmacologia de redes. Este artigo analisa a aplicação de ferramentas de bioinformática na área de farmacologia de redes, com foco em metodologias para projeto e descoberta de fármacos. O objetivo é esclarecer as abordagens existentes e propor direções futuras no contexto do desenvolvimento de fármacos, em vez de sugerir que o trabalho original de projeto e descoberta de fármacos foi conduzido pelos autores.

Referencias

[1] S. Menon, "Bioinformatics approaches to understand gene looping in human genome," EPRA International Journal of Research & Development (IJRD), vol. 6, pp. 170-173, 2021.

[2] Y. L. Orlov, A. V. Baranova, and T. V. Tatarinova, "Bioinformatics methods in medical genetics and genomics," vol. 21, ed: MDPI, 2020, p. 6224.

[3] J. K. Eng and E. W. Deutsch, "Extending Comet for global amino acid variant and post‐translational modification analysis using the PSI extended FASTA format," Proteomics, vol. 20, p. 1900362, 2020.

[4] M. Afzal, S. R. Islam, M. Hussain, and S. Lee, "Precision medicine informatics: principles, prospects, and challenges," IEEE Access, vol. 8, pp. 13593-13612, 2020.

[5] J. Gauthier, A. T. Vincent, S. J. Charette, and N. Derome, "A brief history of bioinformatics," Briefings in bioinformatics, vol. 20, pp. 1981-1996, 2019.

[6] R. Z. Sangeda, A. D. Mwakilili, U. Masamu, S. Nkya, L. A. Mwita, D. P. Massawe, et al., "Baseline Evaluation of Bioinformatics Capacity in Tanzania," 2020.

[7] N. Human and G. R. I. (NHGRI). (2018). DNA Sequencing Costs: Data. Available: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

[8] M. Liu, J. Liu, Y. Chen, M. Wang, H. Chen, and Q. Zheng, "AHNG: representation learning on attributed heterogeneous network," Information Fusion, vol. 50, pp. 221-230, 2019.

[9] S. Vascon, M. Frasca, R. Tripodi, G. Valentini, and M. Pelillo, "Protein function prediction as a graph-transduction game," Pattern Recognition Letters, vol. 134, pp. 96-105, 2020.

[10] Z.-C. Zhang, X.-F. Zhang, M. Wu, L. Ou-Yang, X.-M. Zhao, and X.-L. Li, "A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks," Bioinformatics, vol. 36, pp. 3474-3481, 2020.

[11] L. Wang, Z.-H. You, Y.-M. Li, K. Zheng, and Y.-A. Huang, "GCNCDA: a new method for predicting circRNA-disease associations based on graph convolutional network algorithm," PLOS Computational Biology, vol. 16, p. e1007568, 2020.

[12] N. Zong, R. S. N. Wong, Y. Yu, A. Wen, M. Huang, and N. Li, "Drug–target prediction utilizing heterogeneous bio-linked network embeddings," Briefings in bioinformatics, vol. 22, pp. 568-580, 2021.

[13] H.-C. Yi, Z.-H. You, D.-S. Huang, Z.-H. Guo, K. C. Chan, and Y. Li, "Learning representations to predict intermolecular interactions on large-scale heterogeneous molecular association network," Iscience, vol. 23, p. 101261, 2020.

[14] Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang, "Representation learning for attributed multiplex heterogeneous network," in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 1358-1368.

[15] N. Schaduangrat, S. Lampa, S. Simeon, M. P. Gleeson, O. Spjuth, and C. Nantasenamat, "Towards reproducible computational drug discovery," Journal of cheminformatics, vol. 12, pp. 1-30, 2020.

[16] M. R. Javed, "CADD and molecular dynamic simulations: potential impacts to conventional medicines," Combinatorial Chemistry & High Throughput Screening, vol. 25, pp. 658-659, 2022.

[17] L. Pinzi and G. Rastelli, "Molecular docking: shifting paradigms in drug discovery," International journal of molecular sciences, vol. 20, p. 4331, 2019.

[18] M. Rudrapal and D. Chetia, "Virtual screening, molecular docking and QSAR studies in drug discovery and development programme," Journal of Drug Delivery and Therapeutics, vol. 10, pp. 225-233, 2020.

[19] L. Zhao, H. L. Ciallella, L. M. Aleksunes, and H. Zhu, "Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling," Drug discovery today, vol. 25, pp. 1624-1638, 2020.

[20] S. Namasudra, "Data access control in the cloud computing environment for bioinformatics," International Journal of Applied Research in Bioinformatics (IJARB), vol. 11, pp. 40-50, 2021.

[21] S. Puertas-Martín, A. J. Banegas-Luna, M. Paredes-Ramos, J. L. Redondo, P. M. Ortigosa, O. h. O. Brovarets', et al., "Is high performance computing a requirement for novel drug discovery and how will this impact academic efforts?," Expert opinion on drug discovery, vol. 15, pp. 981-985, 2020.

[22] Y.-L. Wang, F. Wang, X.-X. Shi, C.-Y. Jia, F.-X. Wu, G.-F. Hao, et al., "Cloud 3D-QSAR: a web tool for the development of quantitative structure–activity relationship models in drug discovery," Briefings in Bioinformatics, vol. 22, p. bbaa276, 2021.

[23] A. Olğaç, A. Türe, S. Olğaç, and S. Möller, "Cloud-based high throughput virtual screening in novel drug discovery," in High-Performance Modelling and Simulation for Big Data Applications: Selected Results of the COST Action IC1406 cHiPSet, ed: Springer International Publishing Cham, 2019, pp. 250-278.

[24] B. Seth, S. Dalal, and R. Kumar, "Securing bioinformatics cloud for big data: Budding buzzword or a glance of the future," Recent advances in computational intelligence, pp. 121-147, 2019.

[25] S. Armoogum and X. Li, "Big data analytics and deep learning in bioinformatics with hadoop," in Deep learning and parallel computing environment for bioengineering systems, ed: Elsevier, 2019, pp. 17-36.

[26] L. Frye, S. Bhat, K. Akinsanya, and R. Abel, "From computer-aided drug discovery to computer-driven drug discovery," Drug Discovery Today: Technologies, vol. 39, pp. 111-117, 2021.

[27] A. S. Rifaioglu, H. Atas, M. J. Martin, R. Cetin-Atalay, V. Atalay, and T. Doğan, "Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases," Briefings in bioinformatics, vol. 20, pp. 1878-1912, 2019.

[28] H. Khawar, M. M. Zaheer, H. Khan, U. Akhtar, L. Bukhari, R. Zamir, et al., "Drug Design Assisted by Computers: New Tools in Bioinformatics," Journal of Survey in Fisheries Sciences, vol. 10, pp. 2998-3035, 2023.

[29] X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang, "Graph neural networks and their current applications in bioinformatics," Frontiers in genetics, vol. 12, p. 690049, 2021.

[30] L. Gong and Q. Cheng, "Exploiting edge features for graph neural networks," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 9211-9219.

[31] T. Nguyen, H. Le, T. P. Quinn, T. Nguyen, T. D. Le, and S. Venkatesh, "GraphDTA: predicting drug–target binding affinity with graph neural networks," Bioinformatics, vol. 37, pp. 1140-1147, 2021.

[32] N. Sheng, H. Cui, T. Zhang, and P. Xuan, "Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction," Briefings in Bioinformatics, vol. 22, p. bbaa067, 2021.

[33] H. Eslami Manoochehri and M. Nourani, "Drug-target interaction prediction using semi-bipartite graph model and deep learning," BMC bioinformatics, vol. 21, pp. 1-16, 2020.

[34] T. Zhao, Y. Hu, L. R. Valsdottir, T. Zang, and J. Peng, "Identifying drug–target interactions based on graph convolutional network and deep neural network," Briefings in bioinformatics, vol. 22, pp. 2141-2150, 2021.

[35] J. Peng, Y. Wang, J. Guan, J. Li, R. Han, J. Hao, et al., "An end-to-end heterogeneous graph representation learning-based framework for drug–target interaction prediction," Briefings in bioinformatics, vol. 22, p. bbaa430, 2021.

[36] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, "A comprehensive survey on graph neural networks," IEEE transactions on neural networks and learning systems, vol. 32, pp. 4-24, 2020.

[37] H. Tan, Q. Sun, G. Li, Q. Xiao, P. Ding, J. Luo, et al., "Multiview consensus graph learning for lncRNA–disease association prediction," Frontiers in genetics, vol. 11, p. 89, 2020.

[38] A. C. Mara, J. Lijffijt, S. Günnemann, and T. De Bie, "A Systematic Evaluation of Node Embedding Robustness," in Learning on Graphs Conference, 2022, pp. 42: 1-42: 14.

[39] M. A. Thafar, R. S. Olayan, H. Ashoor, S. Albaradei, V. B. Bajic, X. Gao, et al., "DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques," Journal of Cheminformatics, vol. 12, pp. 1-17, 2020.

[40] X. Tang, J. Luo, C. Shen, and Z. Lai, "Multi-view multichannel attention graph convolutional network for miRNA–disease association prediction," Briefings in Bioinformatics, vol. 22, p. bbab174, 2021.

[41] W. Zhang, X. Yue, W. Lin, W. Wu, R. Liu, F. Huang, et al., "Predicting drug-disease associations by using similarity constrained matrix factorization," BMC bioinformatics, vol. 19, pp. 1-12, 2018.

[42] C. Ruiz, M. Zitnik, and J. Leskovec, "Identification of disease treatment mechanisms through the multiscale interactome," Nature communications, vol. 12, p. 1796, 2021.

[43] R. Celebi, E. Yasar, H. Uyar, O. Gumus, O. Dikenelli, and M. Dumontier, "Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction using linked open data," 2018.

[44] M. R. Karim, M. Cochez, J. B. Jares, M. Uddin, O. Beyan, and S. Decker, "Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network," in Proceedings of the 10th ACM international conference on bioinformatics, computational biology and health informatics, 2019, pp. 113-123.

[45] C. Park, J. Park, and S. Park, "AGCN: Attention-based graph convolutional networks for drug-drug interaction extraction," Expert Systems with Applications, vol. 159, p. 113538, 2020.

[46] S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, "Learning graph embedding with adversarial training methods," IEEE transactions on cybernetics, vol. 50, pp. 2475-2487, 2019.

[47] M. Sun, S. Zhao, C. Gilvary, O. Elemento, J. Zhou, and F. Wang, "Graph convolutional networks for computational drug development and discovery," Briefings in bioinformatics, vol. 21, pp. 919-935, 2020.

[48] T. Wu, Y. Wang, Y. Wang, E. Zhao, and Y. Yuan, "Leveraging graph-based hierarchical medical entity embedding for healthcare applications," Scientific reports, vol. 11, p. 5858, 2021.

[49] L. Wright and S. Davidson, "How to tell the difference between a model and a digital twin," Advanced Modeling and Simulation in Engineering Sciences, vol. 7, pp. 1-13, 2020.

[50] M. N. Kamel Boulos and P. Zhang, "Digital twins: from personalised medicine to precision public health," Journal of Personalized Medicine, vol. 11, p. 745, 2021.

[51] H. Garg, "Digital twin technology: Revolutionaryto improve personalized healthcare: https://doi. org/10.52152/spr/2021.105," Science Progress and Research (SPR), vol. 1, pp. 32-34, 2021.

[52] K. Bruynseels, F. Santoni de Sio, and J. Van den Hoven, "Digital twins in health care: ethical implications of an emerging engineering paradigm," Frontiers in genetics, vol. 9, p. 31, 2018.

[53] R. M. Portela, C. Varsakelis, A. Richelle, N. Giannelos, J. Pence, S. Dessoy, et al., "When is an in silico representation a digital twin? A biopharmaceutical industry approach to the digital twin concept," Digital Twins: Tools and Concepts for Smart Biomanufacturing, pp. 35-55, 2021.

[54] E. O. Popa, M. van Hilten, E. Oosterkamp, and M.-J. Bogaardt, "The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks," Life sciences, society and policy, vol. 17, pp. 1-25, 2021.

[55] S. Nargund, K. Guenther, and K. Mauch, "The move toward biopharma 4.0: insilico biotechnology develops “smart” processes that benefit biomanufacturing through digital twins," Genetic Engineering & Biotechnology News, vol. 39, pp. 53-55, 2019.

[56] Z. Huang, Y. Shen, J. Li, M. Fey, and C. Brecher, "A survey on AI-driven digital twins in industry 4.0: Smart manufacturing and advanced robotics," Sensors, vol. 21, p. 6340, 2021.

[57] B. R. Barricelli, E. Casiraghi, and D. Fogli, "A survey on digital twin: Definitions, characteristics, applications, and design implications," IEEE access, vol. 7, pp. 167653-167671, 2019.

[58] R. Kaul, C. Ossai, A. R. M. Forkan, P. P. Jayaraman, J. Zelcer, S. Vaughan, et al., "The role of AI for developing digital twins in healthcare: The case of cancer care," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 13, p. e1480, 2023.

[59] T. Sun, X. He, and Z. Li, "Digital twin in healthcare: Recent updates and challenges," Digital Health, vol. 9, p. 20552076221149651, 2023.

[60] H. Li, S. Tian, Y. Li, Q. Fang, R. Tan, Y. Pan, et al., "Modern deep learning in bioinformatics," Journal of molecular cell biology, vol. 12, pp. 823-827, 2020.

[61] V. D. Mouchlis, A. Afantitis, A. Serra, M. Fratello, A. G. Papadiamantis, V. Aidinis, et al., "Advances in de novo drug design: from conventional to machine learning methods," International journal of molecular sciences, vol. 22, p. 1676, 2021.

[62] W. Wang and X. Gao, "Deep learning in bioinformatics," 2019.

[63] R. Vijayan, J. Kihlberg, J. B. Cross, and V. Poongavanam, "Enhancing preclinical drug discovery with artificial intelligence," Drug discovery today, vol. 27, pp. 967-984, 2022.

[64] Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan, and X. Gao, "Deep learning in bioinformatics: Introduction, application, and perspective in the big data era," Methods, vol. 166, pp. 4-21, 2019.

[65] S. Quazi, "Role of artificial intelligence and machine learning in bioinformatics: drug discovery and drug repurposing," 2021.

[66] N. Auslander, A. B. Gussow, and E. V. Koonin, "Incorporating machine learning into established bioinformatics frameworks," International Journal of Molecular Sciences, vol. 22, p. 2903, 2021.

[67] B. Tang, Z. Pan, K. Yin, and A. Khateeb, "Recent advances of deep learning in bioinformatics and computational biology," Frontiers in genetics, vol. 10, p. 214, 2019.

[68] S. M. Kandathil, J. G. Greener, and D. T. Jones, "Recent developments in deep learning applied to protein structure prediction," Proteins: Structure, Function, and Bioinformatics, vol. 87, pp. 1179-1189, 2019.

[69] Y. Cao, T. A. Geddes, J. Y. H. Yang, and P. Yang, "Ensemble deep learning in bioinformatics," Nature Machine Intelligence, vol. 2, pp. 500-508, 2020.

[70] L. Chen, X. Tan, D. Wang, F. Zhong, X. Liu, T. Yang, et al., "TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments," Bioinformatics, vol. 36, pp. 4406-4414, 2020.

[71] J. Wang, X. Liu, S. Shen, L. Deng, and H. Liu, "DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations," Briefings in Bioinformatics, vol. 23, p. bbab390, 2022.

[72] S. Liu, X. Xu, Z. Yang, X. Zhao, S. Liu, and W. Zhang, "EPIHC: Improving enhancer-promoter interaction prediction by using hybrid features and communicative learning," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 19, pp. 3435-3443, 2021.

[73] M. M. Fareed, "Impact of Deep learning-DL in the modern computational biology," European journal of volunteering and community-based projects, vol. 1, pp. 35-48, 2021.

[74] N. Ståhl, G. Falkman, A. Karlsson, G. Mathiason, and J. Bostrom, "Deep reinforcement learning for multiparameter optimization in de novo drug design," Journal of chemical information and modeling, vol. 59, pp. 3166-3176, 2019.

[75] L. Patel, T. Shukla, X. Huang, D. W. Ussery, and S. Wang, "Machine learning methods in drug discovery," Molecules, vol. 25, p. 5277, 2020.

[76] Y. Deng, Y. Qiu, X. Xu, S. Liu, Z. Zhang, S. Zhu, et al., "META-DDIE: predicting drug–drug interaction events with few-shot learning," Briefings in Bioinformatics, vol. 23, p. bbab514, 2022.

[77] S. Gull and F. Minhas, "AMP 0: Species-Specific Prediction of Anti-microbial Peptides Using Zero and Few Shot Learning," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 19, pp. 275-283, 2020.

[78] S. Sen, R. Das, S. Dasgupta, and U. Maulik, "Application of Deep Architecture in Bioinformatics," Deep Learning Techniques for Biomedical and Health Informatics, pp. 167-186, 2020.

[79] L. Rundo, A. Tangherloni, and C. Militello, "Artificial Intelligence Applied to Medical Imaging and Computational Biology," vol. 12, ed: MDPI, 2022, p. 9052.

[80] H.-C. Yi, Z.-H. You, X. Zhou, L. Cheng, X. Li, T.-H. Jiang, et al., "ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation," Molecular Therapy-Nucleic Acids, vol. 17, pp. 1-9, 2019.

[81] L. A. Bugnon, C. Yones, D. H. Milone, and G. Stegmayer, "Deep neural architectures for highly imbalanced data in bioinformatics," IEEE Transactions on Neural Networks and Learning Systems, vol. 31, pp. 2857-2867, 2019.

[82] B. Pfeifer, A. Saranti, and A. Holzinger, "GNN-SubNet: disease subnetwork detection with explainable graph neural networks," Bioinformatics, vol. 38, pp. ii120-ii126, 2022.

Cómo citar

APA

Oraibi, A. I., Zheoat, A. M., Sameer, H. N., Alboreadi, M. A. & Abdulhamza, H. M. (2025). Drug design and discovery with bioinformatics tools. Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(3), 621–642. https://revistas.unal.edu.co/index.php/rccquifa/article/view/118428

ACM

[1]
Oraibi, A.I., Zheoat, A.M., Sameer, H.N., Alboreadi, M.A. y Abdulhamza, H.M. 2025. Drug design and discovery with bioinformatics tools. Revista Colombiana de Ciencias Químico-Farmacéuticas. 54, 3 (sep. 2025), 621–642.

ACS

(1)
Oraibi, A. I.; Zheoat, A. M.; Sameer, H. N.; Alboreadi, M. A.; Abdulhamza, H. M. Drug design and discovery with bioinformatics tools. Rev. Colomb. Cienc. Quím. Farm. 2025, 54, 621-642.

ABNT

ORAIBI, A. I.; ZHEOAT, A. M.; SAMEER, H. N.; ALBOREADI, M. A.; ABDULHAMZA, H. M. Drug design and discovery with bioinformatics tools. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 54, n. 3, p. 621–642, 2025. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/118428. Acesso em: 27 dic. 2025.

Chicago

Oraibi, Amjad I., Ahmed Mohammed Zheoat, Hayder Naji Sameer, Mohammed Ayad Alboreadi, y Hayder M. Abdulhamza. 2025. «Drug design and discovery with bioinformatics tools». Revista Colombiana De Ciencias Químico-Farmacéuticas 54 (3):621-42. https://revistas.unal.edu.co/index.php/rccquifa/article/view/118428.

Harvard

Oraibi, A. I., Zheoat, A. M., Sameer, H. N., Alboreadi, M. A. y Abdulhamza, H. M. (2025) «Drug design and discovery with bioinformatics tools», Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(3), pp. 621–642. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/118428 (Accedido: 27 diciembre 2025).

IEEE

[1]
A. I. Oraibi, A. M. Zheoat, H. N. Sameer, M. A. Alboreadi, y H. M. Abdulhamza, «Drug design and discovery with bioinformatics tools», Rev. Colomb. Cienc. Quím. Farm., vol. 54, n.º 3, pp. 621–642, sep. 2025.

MLA

Oraibi, A. I., A. M. Zheoat, H. N. Sameer, M. A. Alboreadi, y H. M. Abdulhamza. «Drug design and discovery with bioinformatics tools». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 54, n.º 3, septiembre de 2025, pp. 621-42, https://revistas.unal.edu.co/index.php/rccquifa/article/view/118428.

Turabian

Oraibi, Amjad I., Ahmed Mohammed Zheoat, Hayder Naji Sameer, Mohammed Ayad Alboreadi, y Hayder M. Abdulhamza. «Drug design and discovery with bioinformatics tools». Revista Colombiana de Ciencias Químico-Farmacéuticas 54, no. 3 (septiembre 25, 2025): 621–642. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/118428.

Vancouver

1.
Oraibi AI, Zheoat AM, Sameer HN, Alboreadi MA, Abdulhamza HM. Drug design and discovery with bioinformatics tools. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 25 de septiembre de 2025 [citado 27 de diciembre de 2025];54(3):621-42. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/118428

Descargar cita

Visitas a la página del resumen del artículo

186

Descargas

Los datos de descargas todavía no están disponibles.