Publicado
Simplificación de la posología de dolutegravir en coinfección VIH/TB tratada con rifampicina: análisis mediante modelado farmacocinético de base fisiológica
Simplification of dolutegravir dosing in HIV/TB patients receiving rifampicin: a physiologicallybased pharmacokinetic modeling analysis
Simplificação da dosagem de dolutegravir em coinfecção HIV/TB tratada com rifampicina: análise utilizando modelagem farmacocinética de base fisiológica
DOI:
https://doi.org/10.15446/rcciquifa.v54n2.118462Palabras clave:
dolugetravir, rifampicina, terapia antrirretroviral, modelado farmacocinético de base fisiológica, interacciones medicamentosas (es)dolutegravir, rifampicin, antiretroviral therapy, physiologically based pharmacokinetic modelling., drug-drug interactions (en)
Descargas
Introducción: En pacientes coinfectados con VIH/TB que reciben dolutegravir y rifampicina se recomienda aumentar la dosis diaria de dolutegravir administrando 50mg cada 12 horas, atendiendo la inducción enzimática provocada por rifampicina y su efecto en la eliminación de dolutegravir. Esto aumenta la complejidad del esquema posológico y disminuye la probabilidad de adherencia. El objetivo de este trabajo fue evaluar simplificaciones al tratamiento utilizando un modelo farmacocinético de base fisiológica (PBPK). Métodos: Se desarrolló y validó un modelo PBPK de interacción fármaco-fármaco en PK-Sim®, describiendo las concentraciones plasmáticas de dolutegravir y rifampicina tras distintas dosis. El modelo permitió realizar simulaciones poblacionales de la exposición de dolutegravir en esquemas posológicos simplificados, evaluando la probabilidad de alcanzar el objetivo terapéutico. Resultados: Se proyecta que bajo tratamiento con rifampicina 600mg diarios, los tratamientos con dolutegravir 50mg o 100mg en una única toma diaria alcanzarían el objetivo terapéutico en 72.6% y 89% de la población, respectivamente. Estas proyecciones coinciden con resultados de ensayos clínicos previos. Conclusión: La administración de dolutegravir 100mg en una única toma sería una alternativa efectiva para simplificar el tratamiento en pacientes con VIH/TB que reciben rifampicina, favoreciendo la adherencia, mejorando la cobertura y contribuyendo al manejo eficiente de la coinfección VIH/TB.
Introduction: In HIV/TB coinfected patients receiving dolutegravir (DTG) with rifampicin (RFP), increasing the daily DTG dose to 50mg every 12 hours is recommended, addressing the enzymatic induction caused by RFP and its effect on DTG elimination. This additional administration results in a more complex dosing regimen with lower probability of patient adherence. The aim of this study was to evaluate simplifications to the recommended posology using a physiologically-based pharmacokinetic model (PBPK). Methods: A drug-drug interaction PBPK model was developed and validated in PK-Sim® software, describing plasma concentrations of DTG and RFP administered at different doses, both jointly and independently. The model was used to perform population simulations of DTG exposure resulting from simplified dosing regimens, evaluating the probability of target attainment. Results: Under treatment with RFP 600mg daily, DTG regimens of single daily doses of 50mg or 100mg are projected to achieve therapeutic target in 72.6% and 89% of the population, respectively. These projections align with previously reported clinical trial results. Conclusion: Administration of DTG as a single daily dose of 100mg would be an effective alternative to simplify treatment in HIV/TB patients receiving RFP, promoting adherence, improving treatment coverage, and contributing to efficient management of HIV/TB coinfection.
Introdução: Em pacientes coinfectados por HIV/TB em uso de dolutegravir e rifampicina, recomendase aumentar a dose diária de dolutegravir, administrando 50 mg a cada 12 horas, levando em consideração a indução enzimática causada pela rifampicina e seu efeito na eliminação do dolutegravir. Isso aumenta a complexidade do regime posológico e diminui a probabilidade de adesão. O objetivo deste estudo foi avaliar simplificações no tratamento utilizando um modelo farmacocinético de base fisiológica (PBPK). Métodos: Um modelo de interação medicamentosa PBPK foi desenvolvido e validado no PK-Sim®, descrevendo as concentrações plasmáticas de dolutegravir e rifampicina após diferentes doses. O modelo permitiu simulações populacionais da exposição ao dolutegravir utilizando regimes posológicos simplificados, avaliando a probabilidade de atingir a meta terapêutica. Resultados: Projeta-se que, sob tratamento com 600 mg de rifampicina por dia, os tratamentos com dolutegravir 50 mg ou 100 mg em dose única diária atingiriam a meta terapêutica em 72,6% e 89% da população, respectivamente. Essas projeções são consistentes com os resultados de ensaios clínicos anteriores. Conclusão: A administração de dolutegravir 100 mg em dose única seria uma alternativa eficaz para simplificar o tratamento em pacientes com HIV/TB em uso de rifampicina, promovendo a adesão, melhorando a cobertura e contribuindo para o manejo eficiente da coinfecção HIV/TB
Referencias
1. WHO. Updated Recommendations on First-Line and Second-Line Antiretroviral Regimens and Post-Exposure Prophylaxis and Recommendations on Early Infant Diagnosis of HIV. (WHO/CDS/HIV/18.51), Geneve, 2018. URL: https://www.who.int/publications/i/item/WHO-CDS-HIV-18.51, consultado en noviembre de 2024.
2. R. Griesel, Y. Zhao, B. Simmons, Z. Omar, L. Wiesner, C.M. Keene, A.M. Hill, G. Meintjes & G. Maartens. Standard-dose versus double-dose dolutegravir in HIV-associated tuberculosis in South Africa (RADIANT-TB): a phase 2, non-comparative, randomised controlled trial. Lancet HIV, 10(7), e433–e441 (2023). Doi: https://doi.org/10.1016/S2352-3018(23)00081-4
3. C. Barcelo, M. Aouri, P. Courlet, M. Guidi, D.L. Braun, H.F. Günthard, R.J. Piso, M. Cavassini, T. Buclin, L.A. Decosterd & C. Csajka. Population pharmacokinetics of dolutegravir: Influence of drug-drug interactions in a real-life setting. J. Antimicrob. Chemother., 74(9), 2690–2697 (2019). Doi: https://doi.org/10.1093/jac/dkz217
4. M.J. Reese, P. M. Savina, G.T. Generaux, H. Tracey, J.E. Humphreys, E. Kanaoka, L.O. Webster, K.A. Harmon, J.D. Clarke & J.W. Polli. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab. Dispos., 41(2), 353–361 (2013). Doi: https://doi.org/10.1124/dmd.112.048918
5. A.N. Kawuma, R.E. Wasmann, K.E. Dooley, M. Boffito, G. Maartens & P. Denti. Population pharmacokinetic model and alternative dosing regimens for dolutegravir coadministered with rifampicin, Antimicrob. Agents Chemother., 66(6), e0021522 (2022). Doi: https://doi.org/10.1128/aac.00215-22
6. M. Contrera & G. Amaya. Situación de la tuberculosis, 2023. República del Uruguay. Comisión Honoraria para la Lucha Antituberculosa y Enfermedades Prevalentes, Montevideo, 2023. URL: https://www.gub.uy/ministerio-salud-publica/sites/ministerio-salud-publica/files/documentos/noticias/Situacion%20TB%202023.pdf, consultado en noviembre 2024.
7. European Medical Agency (EMA). Annex I: Summary of Product Characteristics. 2023; 102 p. URL: https://www.ema.europa.eu/en/documents/product-information/tivicay-epar-product-information_en.pdf, consultado en noviembre de 2024.
8. K.E. Dooley, P. Sayre, J. Borland, E. Purdy, S. Chen, I. Song, A. Peppercorn, S. Everts, S. Piscitelli & C. Flexner. Safety, tolerability, and pharmacokinetics of the HIV integrase inhibitor dolutegravir given twice daily with rifampin or once daily with rifabutin: Results of a Phase 1 Study among healthy subjects. J. Acquir. Immune Defic. Syndr., 62(1), 21–27 (2013). Doi: https://doi.org/10.1097/qai.0b013e318276cda9
9. República del Uruguay. Ministerio de Salud Pública. Situación epidemiológica del VIH/SIDA en Uruguay. Montevideo, 2024. 22 p. URL: https://www.gub.uy/ministerio-salud-publica/sites/ministerio-salud-publica/files/documentos/publicaciones/MSP_INFORME_EPIDEMIOLOGICO_DIA_NACIONAL_VIH.pdf, consultado en noviembre de 2024.
10. C. Modongo, Q. Wang, M. Dima, O. Matsiri, B. Kgwaadira, G. Rankgoane-Pono, S.S. Shin & N.M. Zetola. Clinical and virological outcomes of TB/HIV coinfected patients treated with dolutegravirbased HIV antiretroviral regimens: Programmatic experience from Botswana. J. Acquir. Immune Defic. Syndr., 82(2), 111–115 (2019). Doi: https://doi.org/10.1097/qai.0000000000002126
11. X. Wang, M. Cerrone, F. Ferretti, N. Castrillo, G. Maartens, M. McClure & M. Boffito. Pharmacokinetics of dolutegravir 100 mg once daily with rifampicin, Int. J. Antimicrob. Agents, 54(2), 202–206 (2019). Doi: https://doi.org/10.1016/j.ijantimicag.2019.04.009
12. M. Ibarra, A. Schiavo & L.J. Lesko, Physiologically based pharmacokinetic modeling: Definition and history. En: A. Talevi (editor-in-chief). The ADME Encyclopedia. Springer Cham, 2021. Doi: https://doi.org/10.1007/978-3-030-51519-5_165-1
13. J. Gill, M. Moullet, A. Martinsson, F. Miljković, B. Williamson, R.H. Arends & V.P. Reddy. Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug–drug interaction prediction. CPT: Pharmacometrics Syst. Pharmacol., 11(12), 1560–1568 (2022). Doi: https://doi.org/10.1002/psp4.12870
14. K.S. Taskar, V.P. Reddy, H. Burt, M.M. Posada, M. Varma, M. Zheng, M. Ullah, A.E. Riedmaier, K.I. Umehara, J. Snoeys, et al. Physiologically-based pharmacokinetic models for evaluating membrane transporter mediated drug–drug interactions: Current capabilities, case studies, future opportunities, and recommendations. Clin. Pharmacol. Ther., 107(5), 1082–1115 (2020). Doi: https://doi.org/10.1002/cpt.1693
15. European Medical Agency (EMA). Guideline on the investigation of drug interactions - Scientific guideline. 2015. URL: https://www.ema.europa.eu/en/investigation-drug-interactions-scientific-guideline , consultado en noviembre de 2024.
16. US Food and Drug Administration (FDA). In Vitro Metabolism- and Transporter-Mediated Drug-Drug Interaction Studies – Guidance for Industry (Draft Guidance). 2017; 47 p. URL: https://www.fda.gov/media/108130/download, consultado en noviembre de 2024.
17. US Food and Drug Administration (FDA). Clinical Drug Interaction Studies- Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions – Guidance for Industry (Draft Guidance). 2020; 27 p. URL: https://collections.nlm.nih.gov/catalog/nlm:nlmuid-101767654-pdf, consultado en noviembre de 2024.
18. M. Berton, S. Bettonte, F. Stader, M. Battegay & C. Marzolini. Impact of obesity on the drug-drug interaction between dolutegravir and rifampicin or any other strong inducers. Open Forum Infect. Dis., 10(7), ofad361 (2023). Doi: https://doi.org/10.1093/ofid/ofad361
19. N. Hanke, S. Frechen, D. Moj, H. Britz, T. Eissing, T. Wendl & T. Lehr. PBPK models for CYP3A4 and P-gp DDI prediction: A modeling network of rifampicin, itraconazole, clarithromycin, midazolam, alfentanil, and digoxin. CPT Pharmacometrics Syst. Pharmacol., 7(10), 647–659 (2018). Doi: https://doi.org/10.1002/psp4.12343
20. X.I. Liu, J.D. Momper, N.Y. Rakhmanina, D.J. Green, G.J. Burckart, T.R. Cressey, M. Mirochnick, B.M. Best, J.N. van den Anker & A. Dallmann. Prediction of maternal and fetal pharmacokinetics of dolutegravir and raltegravir using physiologically based pharmacokinetic modeling. Clin. Pharmacokinet., 59(11), 1433–1450 (2020). Doi: https://doi.org/10.1007/s40262-020-00897-9
21. Open Systems Pharmacology. Sensitivity Analysis. URL: https://docs.open-systems-pharmacology.org/shared-tools-and-example-workflows/sensitivity-analysis, consultado en mayo de 2025.
22. M. Shebley, P. Sandhu, A.E. Riedmaier, M. Jamei, R. Narayanan, A. Patel, S.A. Peters, V.P. Reddy, M. Zheng, L. de Zwart, et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: A consortium perspective. Clin. Pharmacol. Ther., 104(1), 88–110 (2018). Doi: https://doi.org/10.1002/cpt.1013
23. G. Baneyx, N. Parrott, C. Meille, A. Iliadis & T. Lavé. Physiologically based pharmacokinetic modeling of CYP3A4 induction by rifampicin in human: Influence of time between substrate and inducer administration. Eur. J. Pharm. Sci., 56, 1-15 (2014). Doi: https://doi.org/10.1016/j.ejps.2014.02.002
24. DrugBank. Dolutegravir. URL: https://go.drugbank.com/drugs/DB08930, consultado en octubre de 2024.
25. PubChem. Dolutegravir. URL: https://pubchem.ncbi.nlm.nih.gov/compound/Dolutegravir, consultado en octubre de 2024.
26. R. Rajoli, D.J. Back, S. Rannard, C. Meyers, C. Flexner, A. Owen & M. Siccardi. Physiologically based pharmacokinetic modelling to inform development of intramuscular long-acting nanoformulations for HIV. Clin. Pharmacokinet., 54(6), 639–650 (2015). Doi: https://doi.org/10.1007/s40262-014-0227-1
27. A. Nakajima, T. Fukami, Y. Kobayashi, A. Watanabe, M. Nakajima & T. Yokoi. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: Rifampicin, rifabutin, and rifapentine. Biochem. Pharmacol., 82(11), 1747–1756 (2011). Doi: https://doi.org/10.1016/j.bcp.2011.08.003
28. A. Collett, J. Tanianis-Hughes, D. Hallifax, G. Warhurst, Predicting P-glycoprotein effects on oral absorption: Correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a(−/−) mice in vivo. Pharm. Res., 21(5), 819–826 (2004). Doi: https://doi.org/10.1023/b:pham.0000026434.82855.69
29. R.G. Tirona, B.F. Leake, A.W. Wolkoff & R.B. Kim. Human organic anion transporting polypeptideC (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J. Pharmacol. Exp. Ther., 304(1), 223–228, (2003). Doi: https://doi.org/10.1124/jpet.102.043026
30. L.I. Kajosaari, J. Laitila, P.J. Neuvonen & J.T. Backman. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: Effect of fibrates and rifampicin. Basic Clin. Pharmacol. Toxicol., 97(4), 249–256 (2005). Doi: https://doi.org/10.1111/j.1742-7843.2005.pto_157.x
31. B. Greiner, M. Eichelbaum, P. Fritz, H.P. Kreichgauer, O. von Richter, J. Zundler & H.K. Kroemer. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest., 104(2), 147–153 (1999). Doi: https://doi.org/10.1172/jci6663
32. I.E. Templeton, J.B. Houston & A. Galetin. Predictive utility of in vitro rifampin induction data generated in fresh and cryopreserved human hepatocytes, Fa2N-4, and HepaRG cells. Drug Metab. Dispos., 39(10), 1921–1929 (2011). Doi: https://doi.org/10.1124/dmd.111.040824
33. V. Dixit, N. Hariparsad, F. Li, P. Desai, K.E. Thummel & J.D. Unadkat. Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: Implications for predicting clinical drug interactions. Drug Metab. Dispos., 35(10), 1853–1859 (2007). Doi: https://doi.org/10.1124/dmd.107.016089
34. Sanofi-Aventis. RIFADIN ® (Rifampin Capsules USP) and RIFADIN ® IV (Rifampin for Injection USP), 2013. URL: https://www.fda.gov/drugsatfda, consultado en octubre de 2024.
35. C.A. Peloquin, G.S. Jaresko, C.L. Yong, A.C. Keung, A.E. Bulpitt & R.W. Jelliffe. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob. Agents Chemother., 41(12), 2670–2679 (1997). Doi: https://doi.org/10.1128/aac.41.12.2670
36. C.A. Peloquin, R. Namdar, M. Singleton & D. Nix, Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest, 115(1), 12–18 (1999). Doi: https://doi.org/10.1378/chest.115.1.12
37. A. Baptista, Y. Imbriago, P. Rega, M. Lorier, N. Dell’Oca, C. Molles, F. Domínguez, D. Guicheney, C. Urroz, M. Velázquez, et al. Pharmacokinetic characterization of isoniazid and rifampicin treatment in tuberculosis patients from Uruguay. En: Abstracts of the V Ibero-American Pharmacometrics Network (RedIF) Congress, April 24th - 26th. Rev. Colomb. Cienc. Quím. Farm., 53(2), 638–640 (2024), URL: https://revistas.unal.edu.co/index.php/rccquifa/article/view/114894/92212, consultado en mayo 2025
38. I.H. Song, J. Borland, P.M. Savina, S. Chen, P. Patel, T. Wajima, A.F. Peppercorn & S.C. Piscitelli. Pharmacokinetics of single-dose dolutegravir in HIV-seronegative subjects with moderate hepatic impairment compared to healthy matched controls. Clin. Pharmacol. Drug Dev., 2(4), 342–348 (2013). Doi: https://doi.org/10.1002/cpdd.55
39. S. Weller, J. Borland, S. Chen, M. Johnson, P. Savina, B. Wynne, T. Wajima, A.F. Peppercorn & S.C. Piscitelli. Pharmacokinetics of dolutegravir in HIV-seronegative subjects with severe renal impairment. Eur. J. Clin. Pharmacol., 70(1), 29–35 (2014). Doi: https://doi.org/10.1007/s00228-013-1590-9
40. F. Oricchio, Á. Leal, C. Maldonado, M. Vázquez & S. Cabrera. Aplicación de un modelo farmacocinético poblacional para el seguimiento de pacientes en tratamiento con dolutegravir. Revista Médica del Uruguay, 40(1), e202 (2024). Doi: https://doi.org/10.29193/rmu.40.1.2
41. K.E. Dooley, R. Kaplan, N. Mwelase, B. Grinsztejn, E. Ticona, M. Lacerda, O. Sued, E. Belonosova, M. Ait-Khaled, K. Angelis, et al. Dolutegravir-based antiretroviral therapy for patients coinfected with tuberculosis and human immunodeficiency virus: A multicenter, noncomparative, open-label, randomized trial. Clin. Infect. Dis., 70(4), 549–556 (2020). Doi: https://doi.org/10.1093/cid/ciz256
42. M.L. Cottrell, T. Hadzic & A.D.M. Kashuba. Clinical pharmacokinetic, pharmacodynamic and drug-interaction profile of the integrase inhibitor dolutegravir. Clin. Pharmacokinet., 52(11), 981–994 (2013). Doi: https://doi.org/10.1007/s40262-013-0093-2
43. J. van Lunzen, F. Maggiolo, J.R. Arribas, A. Rakhmanova, P. Yeni, B. Young, J.K. Rockstroh, S. Almond, I. Song, C. Brothers & S. Min. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect. Dis., 12(2), 111–118 (2012). Doi: https://doi.org/10.1016/S1473-3099(11)70290-0
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




