Publicado

2025-09-25

Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica

Prediction of diseases using transformers for gene expression dataset

Predição de doenças usando transformadores para conjunto de dados de expressão gênica

DOI:

https://doi.org/10.15446/rcciquifa.v54n3.118814

Palabras clave:

expresión génica, transformadores, aprendizaje profundo, conjuntos de datos genéticos, aplicaciones (es)
Gene expression, transformers, deep learning, gene datasets, applications (en)
expressão gênica, transformadores, aprendizado profundo, conjuntos de dados genéticos, aplicações (pt)

Descargas

Autores/as

  • Immaculate Mercy Department of Computer Science and Applications, Periyar Maniammai Institute of Science &Technology (Deemed to be University), Thanjavur, India
  • Chidambaram M Department of Computer Science, Rajah Serfoji Govt College, (Auto), Thanjavur, Affiliated to Bharathidasan University, Tiruchirappalli, India

Introducción: La expresión génica es un proceso importante que conecta la información codificada en un gen con su producto funcional final. Por lo tanto, evaluar la expresión génica es vital para el desarrollo de tratamientos y el seguimiento de enfermedades, ya que estas pueden tener consecuencias imprevistas. Objetivos: Diversos estudios han incorporado el concepto de aprendizaje profundo (ADP) con conjuntos de datos genéticos para la predicción de enfermedades. Sin embargo, los métodos de ADP predominantes se consideran extremadamente ineficaces en términos de precisión y otros aspectos de la predicción de enfermedades. Por lo tanto, se aplica el ADP con transformadores para la predicción de enfermedades con conjuntos de datos genéticos. Dado que los transformadores son mecanismos de autoatención, esto permite el uso de información contextual para cualquier ubicación en la secuencia de entrada y ayuda a capturar dependencias de largo alcance, lo que contribuye a obtener una mayor precisión y un modelo eficaz para la predicción de enfermedades. Métodos: Este artículo se centra en las aplicaciones de la expresión génica con diferentes algoritmos de ADP junto con transformadores para la predicción de enfermedades. Algunas de las aplicaciones de los transformadores con conjuntos de datos de expresión génica incluyen la predicción de cánceres como el de pulmón y el de estómago, y el descubrimiento de fármacos, temas centrales de este artículo. Resultados: Se realiza un análisis crucial considerando aspectos como la arquitectura, el conjunto de datos y el proceso. Este análisis ayuda a identificar los aspectos de los algoritmos de aprendizaje automático con y sin transformadores. Finalmente, se identifican lagunas mediante el análisis de investigadores en transición, las cuales podrían considerarse como recomendaciones futuras para superarlas y generar trabajos prometedores en esta área. Conclusión: A pesar de sus numerosas ventajas, los estudios sobre predicción de enfermedades son limitados. En el presente estudio se analizan diferentes aplicaciones, como la predicción del cáncer y el descubrimiento de fármacos. Se ha observado que la incorporación de transformadores en los algoritmos de aprendizaje automático se ha implementado con mayor frecuencia a partir de 2021; sin embargo, existen algunas complicaciones que deben superarse para la predicción de enfermedades. El aprendizaje automático que utiliza transformadores junto con conjuntos de datos genéticos será útil en la predicción de enfermedades. Este estudio ayudará a los investigadores en sus innovaciones en esta área para mejorar la eficacia y la eficiencia en la predicción de enfermedades.

Introduction: Gene expression is a significant process which bridges the gap between information encoded within a gene and the final functional product of a gene. Therefore, evaluating gene expression is a vital process in terms of developing treatment and monitoring of disease, as diseases can result in unforeseen consequences. Objectives: Various studies have incorporated the Deep Learning (DL) concept with gene datasets for prediction of disease. However, prevailing DL methods are considered to be extremely ineffective in terms of accuracy and other aspects of disease prediction. Therefore, DL with transformers are applied for predicting the disease with gene dataset. As transformers are self-attention mechanisms, this permits the use of contextual information for any location in the input sequence and aids in capturing long range dependencies, which aids in delivering better accuracy and effective model for predicting disease. Methods: This paper focuses on the applications of gene expression with different DL algorithms along with transformers for prediction of diseases. Some of the applications of transformers with gene expression dataset include prediction of cancer such as lung cancer, stomach cancer and drug discovery, a focus of this paper. Results: Crucial analysis is undertaken by considering certain aspects such as architecture, dataset, process. This analysis helps in finding the aspects of the DL algorithms with and without transformers. Finally, gaps are identified through the analysis of transitional researchers and could be considered as future recommendations by overcoming the gaps that are intended to create promising work in this area. Conclusion: Despite having several advantages, there have been limited studies in terms of prediction of disease. Different applications such as cancer prediction, drug discovery are looked at in the present study. It has been observed that incorporation of transformers in DL algorithms were implemented more beginning from the year 2021; still there are a few complications which needs to be overcome for prediction of diseases. DL using transformers alongside gene datasets will be helpful in disease prediction. This study would aid researchers in their innovations in this area for enhancing the effectiveness and efficiency in prediction of disease.

Introdução: A expressão gênica é um processo significativo que preenche a lacuna entre a informação codificada em um gene e o produto funcional final de um gene. Portanto, avaliar a expressão gênica é um processo vital em termos de desenvolvimento de tratamento e monitoramento de doenças, visto que doenças podem resultar em consequências imprevistas. Objetivos: Diversos estudos incorporaram o conceito de Aprendizado Profundo (APL) com conjuntos de dados genéticos para a predição de doenças. No entanto, os métodos de APL predominantes são considerados extremamente ineficazes em termos de precisão e outros aspectos da predição de doenças. Portanto, APL com transformadores é aplicada para a predição de doenças com conjuntos de dados genéticos. Como os transformadores são mecanismos de autoatenção, isso permite o uso de informações contextuais para qualquer local na sequência de entrada e auxilia na captura de dependências de longo alcance, o que contribui para fornecer maior precisão e um modelo eficaz para a predição de doenças. Métodos: Este artigo foca nas aplicações da expressão gênica com diferentes algoritmos de APL, juntamente com transformadores, para a predição de doenças. Algumas das aplicações de transformadores com conjunto de dados de expressão gênica incluem a previsão de cânceres como câncer de pulmão, câncer de estômago e a descoberta de medicamentos, foco deste artigo. Resultados: Uma análise crucial é realizada considerando certos aspectos como arquitetura, conjunto de dados e processos. Essa análise auxilia na identificação dos aspectos dos algoritmos de DL com e sem transformadores. Por fim, lacunas são identificadas por meio da análise de pesquisadores em transição e podem ser consideradas recomendações futuras, superandoas, visando gerar trabalhos promissores nessa área. Conclusão: Apesar de apresentar diversas vantagens, estudos em termos de previsão de doenças são limitados. Diferentes aplicações, como previsão de câncer e descoberta de medicamentos, são analisadas no presente estudo. Observou-se que a incorporação de transformadores em algoritmos de DL foi implementada com mais frequência a partir de 2021; ainda existem algumas complicações que precisam ser superadas para a previsão de doenças. DL utilizando transformadores juntamente com conjuntos de dados de genes será útil na previsão de doenças. Este estudo auxiliará pesquisadores em suas inovações nessa área para aumentar a eficácia e a eficiência na previsão de doenças.

Referencias

[1] V. Chandrasekar, V. Sureshkumar, T. S. Kumar, and S. Shanmugapriya, "Disease prediction based on micro array classification using deep learning techniques," Microprocessors and Microsystems, vol. 77, p. 103189, 2020.

[2] Y. Yang, M. Z. Hossain, E. A. Stone, and S. Rahman, "Exemplar Guided Deep Neural Network for Spatial Transcriptomics Analysis of Gene Expression Prediction," arXiv preprint arXiv:2210.16721, 2022.

[3] G. Lopez-Garcia, J. M. Jerez, L. Franco, and F. J. Veredas, "Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data," PloS one, vol. 15, p. e0230536, 2020.

[4] Uzma, F. Al-Obeidat, A. Tubaishat, B. Shah, and Z. Halim, "Gene encoder: a feature selection technique through unsupervised deep learning-based clustering for large gene expression data," Neural Computing and Applications, pp. 1-23, 2020.

[5] S. Chowdhury, "Cell Type Classification Via Deep Learning On Single-Cell Gene Expression Data," 2023.

[6] M. B. Schabath, M. L. J. C. e. Cote, biomarkers, and prevention, "Cancer progress and priorities: lung cancer," vol. 28, pp. 1563-1579, 2019.

[7] J. D. M.-W. C. Kenton and L. K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding."

[8] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov, "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context."

[9] A. Kolesnikov, A. Dosovitskiy, D. Weissenborn, G. Heigold, J. Uszkoreit, L. Beyer, et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," 2021.

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, et al., "Language models are few-shot learners," vol. 33, pp. 1877-1901, 2020.

[11] Z. Yang, A. Mitra, W. Liu, D. Berlowitz, and H. Yu, "TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records," Nature communications, vol. 14, p. 7857, 2023.

[12] Q. Xu, L. Zhu, T. Dai, and C. Yan, "Aspect-based sentiment classification with multi-attention network," Neurocomputing, vol. 388, pp. 135-143, 2020.

[13] T.-H. Zhang, M. M. Hasib, Y.-C. Chiu, Z.-F. Han, Y.-F. Jin, M. Flores, et al., "Transformer for Gene Expression Modeling (T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions," Cancers, vol. 14, p. 4763, 2022.

[14] M. A. Osseni, P. Tossou, F. Laviolette, and J. Corbeil, "MOT: a Multi-Omics Transformer for multiclass classification tumour types predictions," BioRxiv, p. 2022.11. 14.516459, 2022.

[15] Z. Lv, Y. Lin, R. Yan, Z. Yang, Y. Wang, and F. Zhang, "PG-TFNet: Transformer-based Fusion Network Integrating Pathological Images and Genomic Data for Cancer Survival Analysis," 2021, pp. 491-496.

[16] A. Khan and B. Lee, "Gene transformer: Transformers for the gene expression-based classification of lung cancer subtypes," arXiv preprint arXiv:2108.11833, 2021.

[17] J. Wensel, H. Ullah, and A. Munir, "ViT-ReT: Vision and Recurrent Transformer Neural Networks for Human Activity Recognition in Videos," IEEE Access, 2023.

[18] I. Dirgová Luptáková, M. Kubovčík, and J. Pospíchal, "Wearable sensor-based human activity recognition with transformer model," Sensors, vol. 22, p. 1911, 2022.

[19] D. Huang, P. Z. Kosentka, and W. Liu, "Synthetic biology approaches in regulation of targeted gene expression," Current Opinion in Plant Biology, vol. 63, p. 102036, 2021.

[20] A. Anna and G. Monika, "Splicing mutations in human genetic disorders: examples, detection, and confirmation," Journal of applied genetics, vol. 59, pp. 253-268, 2018.

[21] B. E. Slatko, A. F. Gardner, and F. M. Ausubel, "Overview of next‐generation sequencing technologies," Current protocols in molecular biology, vol. 122, p. e59, 2018.

[22] N. Briglia, A. Petrozza, F. A. Hoeberichts, N. Verhoef, and G. Povero, "Investigating the impact of biostimulants on the row crops corn and soybean using high-efficiency phenotyping and next generation sequencing," Agronomy, vol. 9, p. 761, 2019.

[23] T. Phan, E. J. Fay, Z. Lee, S. Aron, W.-S. Hu, and R. A. Langlois, "Segment-specific kinetics of mRNA, cRNA, and vRNA accumulation during influenza virus infection," Journal of virology, vol. 95, pp. 10.1128/jvi. 02102-20, 2021.

[24] G. Monaco, B. Lee, W. Xu, S. Mustafah, Y. Y. Hwang, C. Carré, et al., "RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types," Cell reports, vol. 26, pp. 1627-1640. e7, 2019.

[25] M. F. Khan, T. M. Ghazal, R. A. Said, A. Fatima, S. Abbas, M. Khan, et al., "An iomt-enabled smart healthcare model to monitor elderly people using machine learning technique," Computational Intelligence and Neuroscience, vol. 2021, 2021.

[26] S. B. Bhonde and J. R. Prasad, "Deep Learning Techniques in Cancer Prediction Using Genomic Profiles," 2021, pp. 1-9.

[27] L. N. Waylen, H. T. Nim, L. G. Martelotto, and M. Ramialison, "From whole-mount to single-cell spatial assessment of gene expression in 3D," Communications biology, vol. 3, p. 602, 2020.

[28] S. Kumar, K. Dhial, and T. Bhati, "DNA Microarray: Gene Expression and Analysis Technology."

[29] Y. Wang, M. Mashock, Z. Tong, X. Mu, H. Chen, X. Zhou, et al., "Changing technologies of RNA sequencing and their applications in clinical oncology," Frontiers in oncology, vol. 10, p. 447, 2020.

[30] A. Negi, A. Shukla, A. Jaiswar, J. Shrinet, and R. S. Jasrotia, "Applications and challenges of microarray and RNA-sequencing," Bioinformatics, pp. 91-103, 2022.

[31] S. Dang, M. Wen, S. Mumtaz, J. Li, and C. Li, "Enabling multicarrier relay selection by sensing fusion and cascaded ANN for intelligent vehicular communications," IEEE Sensors Journal, vol. 21, pp. 15614-15625, 2020.

[32] T. Matsubara, T. Ochiai, M. Hayashida, T. Akutsu, and J. C. Nacher, "Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles," Journal of bioinformatics and computational biology, vol. 17, p. 1940007, 2019.

[33] S. H. Shah, M. J. Iqbal, I. Ahmad, S. Khan, and J. J. Rodrigues, "Optimized gene selection and classification of cancer from microarray gene expression data using deep learning," Neural Computing and Applications, pp. 1-12, 2020.

[34] H. Fang, J.-U. Lee, N. S. Moosavi, and I. Gurevych, "Transformers with learnable activation functions," arXiv preprint arXiv:2208.14111, 2022.

[35] M. Tripathi, "Analysis of convolutional neural network based image classification techniques," Journal of Innovative Image Processing (JIIP), vol. 3, pp. 100-117, 2021.

[36] A. K. Tyagi and A. Abraham, "Recurrent Neural Networks: Concepts and Applications," 2022.

[37] D. Deshwal and P. Sangwan, "A comprehensive study of deep neural networks for unsupervised deep learning," Artificial intelligence for sustainable development: Theory, practice and future applications, pp. 101-126, 2021.

[38] C. Qiao, L. Yang, Y. Shi, H. Fang, and Y. Kang, "Deep belief networks with self-adaptive sparsity," Applied Intelligence, vol. 52, pp. 237-253, 2022.

[39] X. Chen, T.-H. Li, Y. Zhao, C.-C. Wang, and C.-C. Zhu, "Deep-belief network for predicting potential miRNA-disease associations," Briefings in bioinformatics, vol. 22, p. bbaa186, 2021.

[40] S. Garg, D. Tsipras, P. S. Liang, and G. Valiant, "What can transformers learn in-context? a case study of simple function classes," Advances in Neural Information Processing Systems, vol. 35, pp. 30583-30598, 2022.

[41] S. Mehta, X. Lu, W. Wu, D. Weaver, H. Hajishirzi, J. G. Elmore, et al., "End-to-End diagnosis of breast biopsy images with transformers," Medical image analysis, vol. 79, p. 102466, 2022.

[42] O. Ahmed and A. Brifcani, "Gene Expression Classification Based on Deep Learning," Network (CNN), vol. 8, p. 9.

[43] K. KC, R. Li, F. Cui, Q. Yu, and A. R. Haake, "GNE: a deep learning framework for gene network inference by aggregating biological information," 2019.

[44] R. Xie, J. Wen, A. Quitadamo, J. Cheng, and X. Shi, "A deep auto-encoder model for gene expression prediction," BMC genomics, vol. 18, pp. 39-49, 2017.

[45] K. G. Dizaji, X. Wang, and H. Huang, "Semi-Supervised Generative Adversarial Network for Gene Expression Inference," 2018.

[46] J. Clauwaert, G. Menschaert, and W. J. B. i. b. Waegeman, "Explainability in transformer models for functional genomics," vol. 22, p. bbab060, 2021.

[47] L. Jiao, G. Wang, H. Dai, X. Li, S. Wang, and T. J. B. Song, "scTransSort: Transformers for Intelligent Annotation of Cell Types by Gene Embeddings," vol. 13, p. 611, 2023.

[48] S. Jubair, J. R. Tucker, N. Henderson, C. W. Hiebert, A. Badea, M. Domaratzki, et al., "GPTransformer: A transformer-based deep learning method for predicting Fusarium related traits in barley," vol. 12, p. 761402, 2021.

[49] Y. Liu, "Transformer in convolutional neural networks."

[50] L. Gai, M. Xing, W. Chen, Y. Zhang, and X. Qiao, "Comparing CNN-based and transformer-based models for identifying lung cancer: which is more effective?," Multimedia Tools and Applications, vol. 83, pp. 59253-59269, 2024.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., "Attention is all you need," Advances in neural information processing systems, vol. 30, 2017.

[52] A. Rives, S. Goyal, J. Meier, D. Guo, M. Ott, C.L. Zitnick, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences (PNAS), 118(15), e2016239118 (2021). Doi: https://doi.org/10.1073/pnas.2016239118

[53] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.

[54] Z. Wang, Y. Ma, Z. Liu, and J. J. a. e.-p. Tang, "R-Transformer: Recurrent Neural Network Enhanced Transformer," p. arXiv: 1907.05572, 2019.

[55] L. Chen, X. Pan, Y.-H. Zhang, M. Liu, T. Huang, and Y.-D. Cai, "Classification of widely and rarely expressed genes with recurrent neural network," Computational and structural biotechnology journal, vol. 17, pp. 49-60, 2019.

[56] S. Pang, Y. Zhuang, S. Qiao, F. Wang, S. Wang, and Z. J. C. C. Lv, "DCTGM: A Novel Dual-channel Transformer Graph Model for miRNA-disease Association Prediction," pp. 1-10, 2022.

[57] T. Khorshed, M. N. Moustafa, and A. Rafea, "Deep learning for multi-tissue cancer classification of gene expressions (GeneXNet)," IEEE Access, vol. 8, pp. 90615-90629, 2020.

[58] S. Parvathavardhini and S. Manju, "Cancer gene detection using neuro fuzzy classification algorithm," Int J Sci Res Comput Sci Eng Inf Technol, vol. 3, pp. 1223-1229, 2018.

[59] F. Gao, W. Wang, M. Tan, L. Zhu, Y. Zhang, E. Fessler, et al., "DeepCC: a novel deep learning-based framework for cancer molecular subtype classification," Oncogenesis, vol. 8, p. 44, 2019.

[60] M. Bicakci, O. Ayyildiz, Z. Aydin, A. Basturk, S. Karacavus, and B. Yilmaz, "Metabolic imaging based sub-classification of lung cancer," IEEE Access, vol. 8, pp. 218470-218476, 2020.

[61] N. E. M. Khalifa, M. H. N. Taha, D. E. Ali, A. Slowik, and A. E. Hassanien, "Artificial intelligence technique for gene expression by tumor RNA-Seq data: a novel optimized deep learning approach," IEEE Access, vol. 8, pp. 22874-22883, 2020.

[62] J. Raad, L. A. Bugnon, D. H. Milone, and G. Stegmayer, "miRe2e: a full end-to-end deep model based on transformers for prediction of pre-miRNAs," Bioinformatics, vol. 38, pp. 1191-1197, 2022.

[63] Ž. Avsec, V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Taylor, et al., "Effective gene expression prediction from sequence by integrating long-range interactions," Nature methods, vol. 18, pp. 1196-1203, 2021.

[64] T. Song, H. Dai, S. Wang, G. Wang, X. Zhang, Y. Zhang, et al., "TransCluster: A Cell-Type Identification Method for single-cell RNA-Seq data using deep learning based on transformer," Frontiers in Genetics, vol. 13, p. 1038919, 2022.

[65] A. Khan and B. Lee, "DeepGene Transformer: Transformer for the gene expression-based classification of cancer subtypes," Expert Systems with Applications, vol. 226, p. 120047, 2023.

[66] M. Gokhale, S. K. Mohanty, and A. Ojha, "GeneViT: Gene vision transformer with improved DeepInsight for cancer classification," Computers in Biology and Medicine, vol. 155, p. 106643, 2023.

[67] J. Xu, P. Wu, Y. Chen, Q. Meng, H. Dawood, and H. Dawood, "A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data," BMC bioinformatics, vol. 20, pp. 1-11, 2019.

[68] H. Torkey, M. Atlam, N. El-Fishawy, and H. Salem, "A novel deep autoencoder based survival analysis approach for microarray dataset," PeerJ Computer Science, vol. 7, p. e492, 2021.

[69] H. Lu, J. Chen, K. Yan, Q. Jin, Y. Xue, and Z. Gao, "A hybrid feature selection algorithm for gene expression data classification," Neurocomputing, vol. 256, pp. 56-62, 2017.

[70] J. Hu, J. Gao, X. Fang, Z. Liu, F. Wang, W. Huang, et al., "DTSyn: a dual-transformer-based neural network to predict synergistic drug combinations," vol. 23, p. bbac302, 2022.

[71] T.-H. Pham, Y. Qiu, J. Zeng, L. Xie, and P. J. N. m. i. Zhang, "A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing," vol. 3, pp. 247-257, 2021.

[72] A. Mohsen, L. P. Tripathi, and K. Mizuguchi, "Deep learning prediction of adverse drug reactions in drug discovery using open TG–GATEs and FAERS databases," Frontiers in Drug Discovery, vol. 1, p. 768792, 2021.

[73] K. T. Ahmed, S. Park, Q. Jiang, Y. Yeu, T. Hwang, and W. Zhang, "Network-based drug sensitivity prediction," BMC medical genomics, vol. 13, pp. 1-10, 2020.

[74] L. Jiang, C. Jiang, X. Yu, R. Fu, S. Jin, and X. Liu, "DeepTTA: a transformer-based model for predicting cancer drug response," Briefings in bioinformatics, vol. 23, p. bbac100, 2022.

[75] S. Ren, Y. Tao, K. Yu, Y. Xue, R. Schwartz, and X. Lu, "De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization."

[76] S. Zheng, T. Zeng, C. Li, B. Chen, C. W. Coley, Y. Yang, et al., "Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP," Nature Communications, vol. 13, p. 3342, 2022.

[77] G. Pesciullesi, P. Schwaller, T. Laino, and J.-L. Reymond, "Transfer learning enables the molecular transformer to predict regio-and stereoselective reactions on carbohydrates," Nature communications, vol. 11, p. 4874, 2020.

[78] S. Zheng, J. Rao, Z. Zhang, J. Xu, and Y. Yang, "Predicting retrosynthetic reactions using self-corrected transformer neural networks," Journal of chemical information and modeling, vol. 60, pp. 47-55, 2019.

[79] M. K. Elbashir, M. Ezz, M. Mohammed, and S. S. Saloum, "Lightweight convolutional neural network for breast cancer classification using RNA-seq gene expression data," IEEE Access, vol. 7, pp. 185338-185348, 2019.

Cómo citar

APA

Mercy, I. & M, C. (2025). Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica. Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(3), 591–620. https://doi.org/10.15446/rcciquifa.v54n3.118814

ACM

[1]
Mercy, I. y M, C. 2025. Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica. Revista Colombiana de Ciencias Químico-Farmacéuticas. 54, 3 (sep. 2025), 591–620. DOI:https://doi.org/10.15446/rcciquifa.v54n3.118814.

ACS

(1)
Mercy, I.; M, C. Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica. Rev. Colomb. Cienc. Quím. Farm. 2025, 54, 591-620.

ABNT

MERCY, I.; M, C. Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 54, n. 3, p. 591–620, 2025. DOI: 10.15446/rcciquifa.v54n3.118814. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/118814. Acesso em: 27 dic. 2025.

Chicago

Mercy, Immaculate, y Chidambaram M. 2025. «Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica». Revista Colombiana De Ciencias Químico-Farmacéuticas 54 (3):591-620. https://doi.org/10.15446/rcciquifa.v54n3.118814.

Harvard

Mercy, I. y M, C. (2025) «Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica», Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(3), pp. 591–620. doi: 10.15446/rcciquifa.v54n3.118814.

IEEE

[1]
I. Mercy y C. M, «Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica», Rev. Colomb. Cienc. Quím. Farm., vol. 54, n.º 3, pp. 591–620, sep. 2025.

MLA

Mercy, I., y C. M. «Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 54, n.º 3, septiembre de 2025, pp. 591-20, doi:10.15446/rcciquifa.v54n3.118814.

Turabian

Mercy, Immaculate, y Chidambaram M. «Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica». Revista Colombiana de Ciencias Químico-Farmacéuticas 54, no. 3 (septiembre 25, 2025): 591–620. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/118814.

Vancouver

1.
Mercy I, M C. Predicción de enfermedades mediante transformadores para conjuntos de datos de expresión génica. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 25 de septiembre de 2025 [citado 27 de diciembre de 2025];54(3):591-620. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/118814

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

144

Descargas

Los datos de descargas todavía no están disponibles.