Publicado
Chemical-pharmaceutical application of carnitine palmitoyltransferase-2 (CPT-II) through regulating mitochondrial against cancer tumoric cells
Aplicación químico-farmacéutica de la carnitina palmitoiltransferasa-2 (CPT-II) mediante la regulación mitocondrial frente a células tumorales cancerosas
Aplicação químico-farmacêutica da carnitina palmitoiltransferase-2 (CPT-II) através da regulação mitocondrial contra células tumorais cancerígenas
DOI:
https://doi.org/10.15446/rcciquifa.v53n3.119213Palabras clave:
Liver cancer, Kidny failure, Hepatocellular carcinoma, Nonalcoholic fatty liver disease, CPT-I, CPT-II, SDS-PAGE system (en)Cáncer de hígado, Insuficiencia renal, Carcinoma hepatocelular, Enfermedad del hígado graso no alcohólico, CPT-I; CPT-II, Sistema SDS-PAGE (es)
Câncer de fígado, Falência renal, carcinoma hepatocelular, Doença hepática gordurosa não alcoólica, CPT-I; CPT-II, Sistema SDS-PAGE (pt)
Descargas
Background: Carnitine palmitoyltransferase II deficiency is an inherited disorder of long-chain fatty acid oxidation characterized by hypoketotic hypoglycemia, cardiomyopathy, seizures, muscle pain and weakness, and myoglobin. Individuals with carnitine palmitoyltransferase II deficiency have a defect in the production of the enzyme carnitine palmitoyltransferase-II, which plays an important role in fatty acid oxidation. Signs and symptoms of carnitine palmitoyltransferase II deficiency are due to the buildup of fatty acids and long-chain acyl-carnitine as well as reduced energy production in cells. Carnitine palmitoyltransferase II deficiency is an autosomal recessive disease caused by mutations in the CPT2 gene. During changing Nonalcoholic fatty liver disease (NAFLD) to the cirrhosis, the probability of cancer is high that should be considered as a dangerous situation. Methods: SDS-PAGE system of polyacrylamide gel electrophoresis through analytical method for separating charged molecules in mitochondrial mixtures according to their molecular mass in the presence of electrical fields was used. The Invitrogen® Bright Imaging (IBI) system provides was applied for the imaging and analysis of protein imprints. Results: Since currently no effective treatment for CPT-II deficiency, prevention of liver failure is a proper way of treatment through controlling mitochondria without affecting CPT-II potency. We discussed about the severe infantile hepatocardiac muscular position of CPT II deficiency affects the liver heart, and muscles. Conclusions: Through this work, we discussed and characterized the pathophysiological function in several tissues such as liver, Kidney cancers.
Antecedentes: La deficiencia de carnitina palmitoiltransferasa II es un trastorno hereditario de la oxidación de ácidos grasos de cadena larga caracterizado por hipoglucemia hipocetósica, miocardiopatía, convulsiones, dolor y debilidad muscular y mioglobina. Las personas con deficiencia de carnitina palmitoiltransferasa II tienen un defecto en la producción de la enzima carnitina palmitoiltransferasa-II, que desempeña un papel importante en la oxidación de los ácidos grasos. Los signos y síntomas de la deficiencia de carnitina palmitoiltransferasa II se deben a la acumulación de ácidos grasos y acilcarnitina de cadena larga, así como a la reducción de la producción de energía en las células. La deficiencia de carnitina palmitoiltransferasa II es una enfermedad autosómica recesiva causada por mutaciones en el gen CPT2. Durante el cambio de la enfermedad del hígado graso no alcohólico (NAFLD) a la cirrosis, la probabilidad de cáncer es alta y debe considerarse una situación peligrosa. Métodos: Se utilizó el sistema SDS-PAGE de electroforesis en gel de poliacrilamida como método analítico para separar moléculas cargadas en mezclas mitocondriales según su masa molar en presencia de campos eléctricos. El sistema Invitrogen® Bright Imaging (IBI) se utilizó para la obtención de imágenes y el análisis de huellas de proteínas. Resultados: Dado que actualmente no existe un tratamiento eficaz para la deficiencia de CPT-II, la prevención de la insuficiencia hepática es una forma adecuada de tratamiento mediante el control de las mitocondrias sin afectar la potencia de CPT-II. Aquí se discute acerca de la posición muscular hepatocardíaca infantil grave a causa de la deficiencia de CPT II que afecta el hígado, el corazón y los músculos. Conclusiones: En este trabajo, se discute y caracteriza la función fisiopatológica en varios tejidos como el cáncer de hígado y riñón.
Antecedentes: A deficiência de carnitina palmitoiltransferase II é um distúrbio hereditário da oxidação de ácidos graxos de cadeia longa, caracterizado por hipoglicemia hipocetótica, cardiomiopatia, convulsões, dor e fraqueza muscular e mioglobina. Indivíduos com deficiência de carnitina palmitoiltransferase II apresentam um defeito na produção da enzima carnitina palmitoiltransferase-II, que desempenha um papel importante na oxidação de ácidos graxos. Os sinais e sintomas da deficiência de carnitina palmitoiltransferase II são devidos ao acúmulo de ácidos graxos e acil-carnitina de cadeia longa, bem como à redução da produção de energia nas células. A deficiência de carnitina palmitoiltransferase II é uma doença autossômica recessiva causada por mutações no gene CPT2. Durante a mudança da doença hepática gordurosa não alcoólica (DHGNA) para cirrose, a probabilidade de câncer é alta, o que deve ser considerado uma situação perigosa. Métodos: Foi utilizado o sistema SDS-PAGE de eletroforese em gel de poliacrilamida através de método analítico para separação de moléculas carregadas em misturas mitocondriais de acordo com sua massa molecular na presença de campos elétricos. O sistema Invitrogen® Bright Imaging (IBI) fornecido foi aplicado para a geração de imagens e análise de impressões de proteínas. Resultados: Como atualmente não há tratamento eficaz para a deficiência de CPT-II, a prevenção da insuficiência hepática é uma forma adequada de tratamento através do controle das mitocôndrias sem afetar a potência do CPT-II. Discutimos sobre a posição muscular hepatocardíaca infantil grave da deficiência de CPT II que afeta o fígado, o coração e os músculos. Conclusões: Através deste trabalho, discutimos e caracterizamos a função fisiopatológica em diversos tecidos, como câncer de fígado e rim.
Referencias
1. K.C. Fearon, M.J. Tisdale, T. Preston, J.A. Plumb, K.C. Calman, Failure of systemic ketosis to control cachexia and the growth rate of the Walker 256 carcinosarcoma in rats, British Journal of Cancer, 52(1), 87-92 (1985). Doi: https://doi.org/10.1038/bjc.1985.153
2. M. Monajjemi, F. Mollaamin, S. Shojaei, An overview on coronaviruses family from past to Covid-19: Introduce some inhibitors as antiviruses from Gillan’s plants, Biointerface Research in Applied Chemistry, 10(3), 5575-5585 (2020). Doi: https://doi.org/10.33263/briac103.575585
3. D.H. Lawson, A. Richmord, D.W. Nixon, D. Rudman, Metabolic approaches to cancer cachexia, Annual Review of Nutrition, 2, 277-301 (1982). Doi: https://doi.org/10.1146/annurev.nu.02.070182.001425
4. J.F. Williams, R.A. Siddiqui, Biochemistry of cancer cachexia: Review of results, a new hypothesis and a proposal for treatment, Medical Science Research, 18, 3-10 (1990).
5. S. Shahriari, M. Monajjemi, F. Mollaamin, Determination of proteins specification with SARS- COVID-19 based ligand designing, Journal of the Chilean Chemical Society, 67(2), 5468-5476 (2022). Doi: https://doi.org/10.4067/S0717-97072022000205468
6. F. Mollaamin, S. Shahriari, M. Monajjemi, Treating omicron BA.4 & BA.5 via herbal antioxidant asafoetida: A DFT study of carbon nanocarrier in drug delivery, Journal of the Chilean Chemical Society, 68(1), 5781-5786 (2023). URL: https://www.scielo.cl/pdf/jcchems/v68n1/0717-9707-jcchems-68-01-5781.pdf
7. H. Langstein, J.A. Norton, Mechanisms of cancer cachexia, Hematology/Oncology Clinics of North America, 5(1), 103-123 (1991).
8. H.D. Mulligan, M.J. Tisdale, Lipogenesis in tumour and host tissues in mice bearing colonic adenocarcinomas, British Journal of Cancer, 63(5), 719-722 (1991). Doi: https://doi.org/10.1038/bjc.1991.162
9. R.A. Siddiqui, J.F. Williams, The regulation of fatty acid and branched-chain amino acid oxidation in cancer cachectic rats: a proposed role for a cytokine, eicosanoid, and hormone trilogy, Biochemical Medicine and Metabolic Biology, 42(1), 71-86 (1989). Doi: https://doi.org/10.1016/0885-4505(89)90043-1
10. M.P. Thompson, J.E. Koons, E.T. Tan, M.R. Grigor, Modified lipoprotein lipase activities, rates of lipogenesis, and lipolysis as factors leading to lipid depletion in C57BL mice bearing the preputial gland tumor, ESR-586, Cancer Research, 41(8), 3228-3232 (1981).
11. J.D. McGarry, D.W. Foster, Regulation of hepatic fatty acid oxidation and ketone body production, Annual Review of Biochemistry, 49, 395-420 (1980). Doi: https://doi.org/10.1146/annurev.bi.49.070180.002143
12. F. Mollaamin, A. Ilkhani, N. Sakhaei, B. Bonsakhteh, A. Faridchehr, S. Tohidi, M. Monajjemi, Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: Hydrogen bonding study, Journal of Computational and Thoretical Nanoscience, 12(10), 3148-3154 (2015). Doi: https://doi.org/10.1166/jctn.2015.4092
13. A. Guaitani, M. Recchia, M. Carli, M. Rocchetti, I. Bartosek, S. Garatinni, Walker carcinoma 256: A model for studies on tumor-induced anorexia and cachexia, Oncology, 39(3), 173-178 (1982). Doi: https://doi.org/10.1159/000225631
14. L.C. Femandes, U.F. Machado, C.R. Nogueira, A.R. Carpinelli, R. Curi, Insulin secretion in Walker 256 tumor cachexia, American Journal of Physiology, 258(6 Pt 1), E1033-E1036 (1991). Doi: https://doi.org/10.1152/ajpendo.1990.258.6.E1033
15. S. Shahriari, M. Monajjemi, K. Zare, Penetrating to cell membrane bacteria by the effiency of various antibiotics (clindamycin, metronidazole, azithromycin, sulfamethoxazole, baxdela, ticarcillin, and clavulanic acid) using S-NICS theory, Biointerface Research in Applied Chemistry, 8(3), 3219-3223 (2018). URL: https://biointerfaceresearch.com/?page_id=2421
16. J.M. Argilés, J. Azcón-Bieto, The metabolic environment of cancer, Molecular and Cellular Biochemistry, 81, 3-17 (1988). Doi: https://doi.org/10.1007/BF00225648
17. R.A. Karamali, J. Marsh, C. Fuchs, Effect of omega-3 fatty acids on growth of a rat mammary tumor, Journal of the National Cancer Institute, 73(2), 457-461 (1984). Doi: https://doi.org/10.1093/jnci/73.2.457
18. M.G. Vecchia, S. Arizawa, R. Curi, E.A. Newsholme, Propionate inhibits cell proliferation in culture, Cancer Research, Therapy and Control, 3, 15-21 (1992).
19. J. Gelin, C. Andersson, K. Lundholm, Effects of indomethacin, cytokines, and cyclosporin A on tumor growth and the subsequent development of cancer cachexia, Cancer Research, 51(3), 880-885 (1991). URL: https://aacrjournals.org/cancerres/article/51/3/880/497387/Effects-of-Indomethacin-Cytokinesand-Cyclosporin
20. L. Tessitore, P. Costelli, F.M. Baccino, Humoral mediation for cachexia in tumour-bearing rats, British Journal of Cancer, 67(1), 15-23 (1993). Doi: https://doi.org/10.1038/bjc.1993.4
21. F. Mollaamin, M. Monajjemi, Thermodynamic research on the inhibitors of coronavirus through drug delivery method, Journal of the Chilean Chemical Society, 66(2), 5195-5205 (2021). Doi: http://doi.org/10.4067/S0717-97072021000205195
22. N. Stefan, K.A. Cusi, A global view of the interplay between non-alcoholic fatty liver disease and diabetes, The Lancet: Diabetes & Endocrinology, 10(4), 284-296 (2022). Doi: https://doi.org/10.1016/S2213-8587(22)00003-1
23. F. Mollaamin, Physicochemical investigation of anti-COVID19 drugs using several medicinal plants, Journal of the Chilean Chemical Society, 67(2), 5537-5546 (2022). Doi: https://doi.org/10.4067/S0717-97072022000205537
24. N.d.l.A. Segura-Azuara, C.D. Varela-Chinchilla, P.A. Trinidad-Calderón, MAFLD/NAFLD biopsy-free scoring systems for hepatic steatosis, NASH, and fibrosis diagnosis, Frontiers in Medicine (Lausanne), 8, 774079 (2021). Doi: https://doi.org/10.3389/fmed.2021.774079
25. T.V. Rohm, D.T. Meier, J.M. Olefsky, M.Y. Donath, Inflammation in obesity, diabetes, and related disorders, Immunity, 55(1), 31-55 (2022). Doi: https://doi.org/10.1016/j.immuni.2021.12.013
26. N. Tamaki, V. Ajmera, R. Loomba, Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD, Nature Reviews Endocrinology, 18, 55-66 (2022). Doi: https://doi.org/10.1038/s41574-021-00584-0
27. E. Scorletti, R.M. Carr, A new perspective on NAFLD: Focusing on lipid droplets, Journal of Hepatology, 76(4), 934-945 (2022). Doi: https://doi.org/10.1016/j.jhep.2021.11.009
28. F. Foerster, S.J. Gairing, L. Müller, P.R. Galle, NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options, Journal of Hepatology, 76(2), 446-457 (2022). Doi: https://doi.org/10.1016/j.jhep.2021.09.007
29. J.-P. Bonnefont, F. Djouadi, C. Prip-Buus, S. Gobin, A. Munnich, J. Bastin, Carnitine palmitoyltransferases 1 and 2: Biochemical, molecular and medical aspects, Molecular Aspects of Medicine, 25(5-6), 495-520 (2004). Doi: https://doi.org/10.1016/j.mam.2004.06.004
30. J.M. Llovet, R.K. Kelley, A. Villanueva, A.G. Singal, E. Pikarsky, S. Roayaie, R. Lencioni, K. Koike, J. Zucman-Rossi, R.S. Finn, Hepatocellular carcinoma, Nature Reviews Disease Primers, 7, 6 (2021). Doi: https://doi.org/10.1038/s41572-020-00240-3
31. M.A.A. Zadeh, H. Lari, L. Kharghanian, E. Balali, R. Khadivi, H. Yahyaei, F. Mollaamin, M. Monajjemi, Density functional theory study and anti-cancer properties of shyshaq plant: In view point of nano biotechnology, Journal of Computational and Thoretical Nanoscience, 12(11), 4358-4367 (2015). Doi: https://doi.org/10.1166/jctn.2015.4366
32. Z.M. Younossi, A.B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, M. Wymer, Global epidemiology of nonalcoholic fatty liver diseaseMeta-analytic assessment of prevalence, incidence, and outcomes, Hepatology, 64(1), 73-84 (2016). Doi: https://doi.org/10.1002/hep.28431
33. Z. Younossi, Q.M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, J. George, E. Bugianesi, Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention, Nature Reviews Gastroenterology & Hepatology, 15(1), 11-20 (2017). Doi: https://doi.org/10.1038/nrgastro.2017.109
34. M. Monajjemi, M. Noei, F. Mollaamin, Design of fMet-tRNA and calculation of its bonding properties by quantum mechanics, Nucleosides, Nucleotides & Nucleic Acids, 29(10), 676-683 (2010). Doi: https://doi.org/10.1080/15257771003781642
35. A. Sugiura, J.C. Rathmell, Metabolic barriers to T cell function in tumors, The Journal of Immunology, 200(2), 400-407 (2018). Doi: https://doi.org/10.4049/jimmunol.1701041
36. C. Ma, A.H. Kesarwala, T. Eggert, J. Medina-Echeverz, D.E. Kleiner, P. Jin, D.F. Stroncek, M. Terabe, V. Kapoor, M. ElGindi, et al., NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis, Nature, 531(7593), 253-257 (2016). Doi: https://doi.org/10.1038/nature16969
37. T.-W. Kang, T. Yevsa, N. Woller, L. Hoenicke, T. Wuestefeld, D. Dauch, A. Hohmeyer, M. Gereke, R. Rudalska, A. Potapova, et al., Senescence surveillance of pre-malignant hepatocytes limits liver cancer development, Nature, 479(7374), 547-551 (2011). Doi: https://doi.org/10.1038/nature10599
38. C. Schneider, A. Teufel, T. Yevsa, F. Staib, A. Hohmeyer, G. Walenda, H.W. Zimmermann, M. Vucur, S. Huss, N. Gassler, et al., Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer, Gut, 61(12), 1733-1743 (2012). Doi: https://doi.org/10.1136/gutjnl-2011-301116
39. E. Tran, S. Turcotte, A. Gros, P.F. Robbins, Y.-C. Lu, M.E. Dudley, J.R. Wunderlich, R.P. Somerville, K. Hogan, C.S. Hinrichs, et al., Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer, Science, 344(6184), 641-645 (2014). Doi: https://doi.org/10.1126/science.1251102
40. B. Khalili-Hadad, F. Mollaamin, M. Monajjemi, Biophysical chemistry of macrocycles for drug delivery: A theoretical study, Russian Chemical Bulletin, 60, 238-241 (2011). Doi: https://doi.org/10.1007/s11172-011-0039-5
41. J.-P. Bonnefont, F. Djouadi, C. Prip-Buus, S. Gobin, A. Munnich, J. Bastin, Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects, Molecular Aspects of Medicine, 25(5-6), 495-520 (2004). Doi: https://doi.org/10.1016/j.mam.2004.06.004
42. H.E. Xu, M.H. Lambert, V.G. Montana, D.J. Parks, S.G. Blanchard, P.J. Brown, D.D. Sternbach, J.M. Lehmann, G.B. Wisely, T.M. Willson, et al., Molecular recognition of fatty acids by peroxisome proliferatoractivated receptors, Molecular Cell, 3(3), 397-403 (1999). Doi: https://doi.org/10.1016/S1097-2765(00)80467-0
43. J.K. Reddy, T. Hashimoto, Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system, Annual Review of Nutrition, 21, 193-230 (2001). Doi: https://doi.org/10.1146/annurev.nutr.21.1.193
44. S. Song, R.R. Attia, S. Connaughton, M.I. Niesen, G.C. Ness, M.B. Elam, R.T. Hori, G.A. Cook, E.A. Park, Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements, Molecular and Cellular Endocrinology, 325(1-2), 54-63 (2010). Doi: https://doi.org/10.1016/j.mce.2010.05.019
45. P. Sadana, Y. Zhang, S. Song, G.A. Cook, M.B. Elam, E.A. Park, Regulation of carnitine palmitoyltransferase I (CPT-Ialpha) gene expression by the peroxisome proliferator activated receptor gamma coactivator (PGC-1) isoforms, Molecular and Cellular Endocrinology, 267(1-2), 6-16 (2007). Doi: https://doi.org/10.1016/j.mce.2006.11.012
46. T. Kurokawa, Y. Shimomura, G. Bajotto, K. Kotake, T. Arikawa, N. Ito, A. Yasuda, H. Nagata, T. Nonami, K. Masuko, Peroxisome proliferator-activated receptor alpha (PPARalpha) mRNA expression in human hepatocellular carcinoma tissue and noncancerous liver tissue, World Journal of Surgical Oncology, 9, 167 (2011). Doi: https://doi.org/10.1186/1477-7819-9-167
47. H.L. Petrick, G.P. Holloway, Cytosolic reverse CrAT activity in cardiac tissue: potential importance for fuel selection, Biochemical Journal, 475(7), 1267-1269 (2018). Doi: https://doi.org/10.1042/BCJ20180121
48. Y. Wang, J.-H. Lu, F. Wang, Y.-N. Wang, M.-M. He, Q.-N. Wu, Y.-X. Lu, H.-E. Yu, Z.-H. Chen, Q. Zhao, et al., Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers, Cancer Letters, 473, 74-89 (2020). Doi: https://doi.org/10.1016/j.canlet.2019.12.036
49. J.-J. Gu, M. Yao, J. Yang, Y. Cai, W.-J. Zheng, L. Wang, D.-B. Yao, D.-F. Yao, Mitochondrial carnitine palmitoyl transferase-II inactivity aggravates lipid accumulation in rat hepatocarcinogenesis, World Journal of Gastroenterology, 23(2), 256-264 (2017). Doi: https://doi.org/10.3748/wjg.v23.i2.256
50. A.C. Rufer, R. Thoma, M. Hennig, Structural insight into function and regulation of carnitine palmitoyltransferase, Cellular and Molecular Life Science, 66, 2489-2501 (2009). Doi: https://doi.org/10.1007/s00018-009-0035-1
51. S. Song, R.R. Attia, S. Connaughton, M.I. Niesen, G.C. Ness, M.B. Elam, R.T. Hori, G.A. Cook, E.A. Park, Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements, Molecular and Cellular Endocrinology, 325(1-2), 54-63 (2010). Doi: https://doi.org/10.1016/j.mce.2010.05.019
52. A.C. Rufer, R. Thoma, J. Benz, M. Stihle, B. Gsell, E. De Roo, D.W. Banner, F. Mueller, O. Chomienne, M. Hennig, The crystal structure of carnitine palmitoyltransferase 2 and implications for diabetes treatment, Structure, 14(4), 713-723 (2006). Doi: https://doi.org/10.1016/j.str.2006.01.008
53. S. Han, R. Wei, X. Zhang, N. Jiang, M. Fan, J.H. Huang, B. Xie, L. Zhang, W. Miao, A.C. Butler, et al., CPT1A/2-mediated FAO enhancement-A metabolic target in radioresistant breast cancer, Frontiers in Oncology, 9, 1201 (2019). Doi: https://doi.org/10.3389/fonc.2019.01201
54. M. de Carvalho-Ribeiro, G. Szabo, Role of the inflammasome in liver disease, Annual Review of Pathology: Mechanisms of Disease, 17, 345-365 (2022). Doi: https://doi.org/10.1146/annurev-pathmechdis-032521-102529
55. A.C. Rufer, A. Lomize, J. Benz, O. Chomienne, R. Thoma, M. Hennig, Carnitine palmitoyltransferase 2: analysis of membrane association and complex structure with a substrate analog, FEBS Letters, 581(17), 3247-3252 (2007). Doi: https://doi.org/10.1016/j.febslet.2007.05.080
56. A. Song, Y. Park, B. Kim, S.G. Lee, Modulation of lipid metabolism by transanethole in hepatocytes, Molecules, 25(21), 4946 (2020). Doi: https://doi.org/10.3390/molecules25214946
57. F. Mollaamin, M. Monajjemi, S. Salemi, M.T. Baei, A dielectric effect on normal mode analysis and symmetry of BNNT nanotube, Fullerenes, Nanotubes and Carbon Nanostructures, 19(3), 182-196 (2011). Doi: https://doi.org/10.1080/15363831003782932
58. J. Wang, H. Xiang, Y. Lu, T. Wu, G. Ji, The role and therapeutic implication of CPTs in fatty acid oxidation and cancers progression, American Journal of Cancer Research, 11(6), 2477-2494 (2021). URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263643/pdf/ajcr0011-2477.pdf
59. M. Yao, M. Cai, D. Yao, X. Xu, R. Yang, Y. Li, Y. Zhang, H. Kido, D. Yao, Abbreviated half-lives and impaired fuel utilization in carnitine palmitoyltransferase II variant fibroblasts, PLoS One, 10(3), e0119936 (2015). Doi: https://doi.org/10.1371/journal.pone.0119936
60. M. Yao, D. Yao, M. Yamaguchi, J. Chida, D. Yao, H. Kido, Bezafibrate upregulates carnitine palmitoyltransferase II expression and promotes mitochondrial energy crisis dissipation in fibroblasts of patients with influenza-associated encephalopathy, Molecular Genetics and Metabolism, 104(3), 265-272 (2011). Doi: https://doi.org/10.1016/j.ymgme.2011.07.009
61. F. Mollaamin, S. Shahriari, M. Monajjemi, Monkeypox disease treatment by tecovirimat adsorbed onto single-walled carbon nanotube through drug delivery method, Journal of the Chilean Chemical Society, 68(1), 5796-5801 (2023). Doi: http://doi.org/10.4067/S0717-97072023000105796
62. F. Mollaamin, S. Shahriari, M. Monajjemi, Drug design of medicinal plants as a treatment of omicron variant (COVID-19 variant B.1.1.529), Journal of the Chilean Chemical Society, 67(3), 5562-5470 (2022). Doi: https://doi.org/10.4067/S0717-97072022000305562
63. A. Tahan, F. Mollaamin, M. Monajjemi, Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy, Russian Journal of Physical Chemistry A, 83(4), 587-597 (2009). DOI: https://doi.org/10.1134/S003602440904013X
64. M. Monajjemi, M. Khaleghian, N. Tadayonpour, F. Mollaamin, The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study, International Journal of Nanoscience, 9(5), 517-529 (2010). Doi: https://doi.org/10.1142/S0219581X10007071
65. M. Khaleghian, M. Zahmatkesh, F. Mollaamin, M. Monajjemi, Investigation of solvent effects on armchair single-walled carbon nanotubes: A QM/MD study, Fullerenes, Nanotubes and Carbon Nanostructures, 19(4), 251-261 (2011). Doi: https://doi.org/10.1080/15363831003721757
66. K. Bakhshi, F. Mollaamin, M. Monajjemi, Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA), Journal of Computational and Theoretical Nanoscience, 8(4), 763-768 (2011). Doi: https://doi.org/10.1166/jctn.2011.1750
67. E.M. Sarasia, S. Afsharnezhad, B. Honarparvar, F. Mollaamin, M. Monajjemi, Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives, Physics and Chemistry of Liquids, 49(5), 561-571 (2011). Doi: https://doi.org/10.1080/00319101003698992
68. M. Monajjemi, M.T. Baie, F. Mollaamin, Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1-3) complexes: Density functional calculations, Russian Chemical Bulletin, 59, 886-889 (2010). Doi: https://doi.org/10.1007/s11172-010-0181-5
69. Q. Zhao, R. Yang, J. Wang, D.D. Hu, F. Li, PPARα activation protects against cholestatic liver injury, Scientific Reports, 7(1), 9967 (2017). Doi: https://doi.org/10.1038/s41598-017-10524-6
70. C.-J. Liou, C.-H. Wei, Y.-L. Chen, C.-Y. Cheng, C.-L. Wang, W.-C. Huang, Fisetin protects against hepatic steatosis through regulation of the Sirt1/AMPK and fatty acid β-oxidation signaling pathway in high-fat diet induced obese mice, Cellular Physiology and Biochemistry, 49(5), 1870-1884 (2018). Doi: https://doi.org/10.1159/000493650
71. N.F. Brown, J.K. Hill, V. Esser, J.L. Kirkland, B.E. Corkey, D.W. Foster, J.D. McGarry, Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes, Biochemical Journal, 327(1), 225-231 (1997). Doi: https://doi.org/10.1042/bj3270225
72. N.F. Brown, B. Weis, J.E. Husti, D.W. Foster, J.D. McGarry, Mitochondrial carnitine palmitoyltransferase I isoform switching in the developing rat heart, Journal of Biological Chemistry, 270(15), 8952-8957 (1995), Doi: https://doi.org/10.1074/jbc.270.15.8952
73. Z.J. Brown, Q. Fu, C. Ma, M. Kruhlak, H. Zhang, J. Luo, B. Heinrich, S.J. Yu, Q. Zhang, A. Wilson, et al., Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4+ T cell apoptosis promoting HCC development, Cell Death & Disease, 9, 620 (2018). Doi: https://doi.org/10.1038/s41419-018-0687-6
74. M. Makrecka-Kuka, S. Korzh, M. Videja, R. Vilskersts, E. Sevostjanovs, O. Zharkova-Malkova, P. Arsenyan, J. Kuka, M. Dambrova, E. Liepinsh, Inhibition of CPT2 exacerbates cardiac dysfunction and inflammation in experimental endotoxaemia, Journal of Cellular and Molecular Medicine, 24(20), 11903-11911 (2020). Doi: https://doi.org/10.1111/jcmm.15809
75. T.-I. Lee, Y.-H. Kao, L. Baigalmaa, T.-W. Lee, Y.-Y. Lu, Y.-C. Chen, T.-F. Chao, Y.-J. Chen, Sodium hydrosulphide restores tumour necrosis factor-α-induced mitochondrial dysfunction and metabolic dysregulation in HL-1 cells, Journal of Cellular and Molecular Medicine, 23(11), 7641-7650 (2019). Doi: https://doi.org/10.1111/jcmm.14637
76. P. Esteves, L. Blanc, A. Celle, I. Dupin, E. Maurat, N. Amoedo, G. Cardouat, O. Ousova, L. Gales, F. Bellvert, et al., Crucial role of fatty acid oxidation in asthmatic bronchial smooth muscle remodeling, European Respiratory Journal, 58, 2004252 (2021). Doi: https://doi.org/10.1183/13993003.04252-2020
77. K.W. Gibbs, C.-C.C. Key, L. Belfield, J. Krall, L. Purcell, C. Liu, D.C. Files, Aging influences the metabolic and inflammatory phenotype in an experimental mouse model of acute lung injury, The Journals of Gerontology: Series A, 76(5), 770-777 (2021). Doi: https://doi.org/10.1093/gerona/glaa248
78. Y.H. Xie, Y. Xiao, Q. Huang, X.F. Hu, Z.C. Gong, J. Du, Role of the CTRP6/AMPK pathway in kidney fibrosis through the promotion of fatty acid oxidation, European Journal of Pharmacology, 892, 173755 (2021). Doi: https://doi.org/10.1016/j.ejphar.2020.173755
79. V. Miguel, J. Tituaña, J.I. Herrero, L. Herrero, D. Serra, P. Cuevas, C. Barbas, D. Rodríguez-Puyol, L. Márquez-Expósito, M. Ruiz-Ortega, et al., Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis, The Journal of Clinical Investigation, 131, e140695 (2021). Doi: https://doi.org/10.1172/JCI140695
80. X. Xiong, Y.-A. Wen, R. Fairchild, Y.Y. Zaytseva, H.L. Weiss, B.M. Evers, T. Gao, Upregulation of CPT1A is essential for the tumor-promoting effect of adipocytes in colon cancer, Cell Death & Disease, 11, 736 (2020). Doi: https://doi.org/10.1038/s41419-020-02936-6
81. S. Peng, D. Chen, J. Cai, Z. Yuan, B. Huang, Y. Li, H. Wang, Q. Luo, Y. Kuang, W. Liang, et al., Enhancing cancer-associated fibroblast fatty acid catabolism within a metabolically challenging tumor microenvironment drives colon cancer peritoneal metastasis, Molecular Oncology, 15(5), 1391-1411 (2021). Doi: https://doi.org/10.1002/1878-0261.12917
82. S. Qiao, C. Lv, Y. Tao, Y. Miao, Y. Zhu, W. Zhang, D. Sun, X. Yun, Y. Xia, Z. Wei, et al., Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer, Cancer Letters, 491, 162-179 (2020). Doi: https://doi.org/10.1016/j.canlet.2020.08.033
83. Z. Tan, Y. Zou, M. Zhu, Z. Luo, T. Wu, C. Zheng, A. Xie, H. Wang, S. Fang, S. Liu, Y. Li, Z. Lu, Carnitine palmitoyl transferase 1A is a novel diagnostic and predictive biomarker for breast cancer, BMC Cancer, 21, 409 (2021). Doi: https://doi.org/10.1186/s12885-021-08134-7
84. G. Petóvári, T. Dankó, A.-M. Tókés, E. Vetlényi, I. Krencz, R. Raffay, M. Hajdu, D. Sztankovics, K. Németh, K. Vellai-Takács, et al., In situ metabolic characterisation of breast cancer and its potential impact on therapy, Cancers, 12(9), 2492 (2020). Doi: https://doi.org/10.3390/cancers12092492
85. S. Mao, Q. Ling, J. Pan, F. Li, S. Huang, W. Ye, W. Wei, X. Lin, Y. Qian, Y. Wang, et al., Inhibition of CPT1a as a prognostic marker can synergistically enhance the antileukemic activity of ABT199, Journal of Translational Medicine, 19, 181 (2021). Doi: https://doi.org/10.1186/s12967-021-02848-9
86. L. Guan, Y. Chen, Y. Wang, H. Zhang, S. Fan, Y. Gao, T. Jiao, K. Fu, J. Sun, A. Yu, et al., Effects of carnitine palmitoyltransferases on cancer cellular senescence, Journal of Cellular Physiology, 234(2), 1707-1719 (2019). Doi: https://doi.org/10.1002/jcp.27042
87. A. Aloia, D. Müllhaupt, C.D. Chabbert, T. Eberhart, S. Flückiger-Mangual, A. Vukolic, O. Eichhoff, A. Irmisch, L.T. Alexander, E. Scibona, et al., A fatty acid oxidation-dependent metabolic shift regulates the adaptation of BRAF-mutated melanoma to MAPK inhibitors, Clinical Cancer Research, 25(22), 6852-6867 (2019). Doi: https://doi.org/10.1158/1078-0432.CCR-19-0253
88. P.R. Joshi, S. Zierz, Muscle carnitine palmitoyltransferase II (CPT II) deficiency: A conceptual approach, Molecules, 25(8), 1784 (2020). Doi: https://doi.org/10.3390/molecules25081784
89. H. Chen, Z. Li, L. Dong, Y. Wu, H. Shen, Z. Chen, Lipid metabolism in chronic obstructive pulmonary disease, International Journal of Chronic Obstructive Pulmonary Disease, 14, 1009-1018 (2019). Doi: https://doi.org/10.2147/copd.s196210
90. T. Chen, G. Wu, H. Hu, C. Wu, Enhanced fatty acid oxidation mediated by CPT1C promotes gastric cancer progression, Journal of Gastrointestinal Oncology, 11(4), 695-707 (2020). Doi: https://doi.org/10.21037/jgo-20-157
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13