Publicado
Investigation and health risk assessment of heavy metals in cattle from slaughterhouses in Federal Capital Territory (FCT), Abuja, Nigeria
Investigación y evaluación de riesgos para la salud de metales pesados en ganado vacuno de mataderos en el Territorio de la Capital Federal (FCT), Abuja, Nigeria
Investigação e avaliação do risco sanitário de metais pesados em bovinos provenientes de matadouros no Território da Capital Federal (FCT), Abuja, Nigéria
DOI:
https://doi.org/10.15446/rcciquifa.v53n3.119214Palabras clave:
Cattle, Hazard index, Hazard Quotient, Heavy metals and Incremental Lifetime Cancer Risk (en)Bovinos, índice de peligrosidad, cociente de peligrosidad, metales pesados y riesgo incremental de cáncer a lo largo de la vida (es)
Bovinos, Índice de Perigo, Quociente de Perigo, Metais Pesados e Risco Incremental de Câncer ao Longo da Vida (pt)
Descargas
Introduction: Heavy metals toxicity in cattle can cause health related issues in humans when they ingest cow meat polluted with heavy metals. The dearth of information regarding the level of heavy metals in cattle meat consumed in the Federal Capital Territory (FCT), Abuja, Nigeria, and its associated health risk to humans led to this study. Aim: to determine the level of the heavy metals- nickel, lead, cobalt, cadmium and chromium in cow muscle, intestine and liver from slaughterhouses in Federal Capital Territory (FCT), Abuja, Nigeria in the meat parts, as well as the health risk of consumption of the metals in the meat parts. Methodology: The heavy metals were assayed using Atomic Absorption Spectrophotometer Agilent 200 Series A. A. Health risk assessment of exposed adult men and women, adolescent and children to the heavy metals in the meat parts were evaluated via hazard quotient (HQ), hazard index (HI) and incremental lifetime cancer risk (ILCR) calculations. Results: The result of the study showed overall mean concentration of the metals in cow muscle, intestine and liver samples ranging from 0.0417 ±0.0226 to 0.690 ±0.0570 mg/kg, fresh weight. HQ and HI values were less than 1, and ILCR values of the carcinogenic heavy metals ranged from 1.07 × 10-7 to 7.50 × 10-5. Conclusion: Consumers of cow muscle, intestine and liver in FCT, Abuja, Nigeria are at low risk of developing chronic non-cancer health related issues, and cancer due to nickel, lead, cobalt, cadmium and chromium in cow meat parts from slaughterhouses in FCT, Abuja, Nigeria.
Introducción: La toxicidad por metales pesados en el ganado puede causar problemas de salud en los humanos cuando estos ingieren carne de vaca contaminada con estos metales pesados. La falta de información sobre el nivel de metales pesados en la carne de ganado consumida en el Territorio de la Capital Federal (FCT), Abuja, Nigeria, y el riesgo asociado para la salud de los seres humanos llevó a este estudio. Objetivo: determinar el nivel de metales pesados: níquel, plomo, cobalto, cadmio y cromo en el músculo, el intestino y el hígado de las vacas procedentes de mataderos en el Territorio de la Capital Federal (FCT), Abuja, Nigeria, así como el nivel de riesgo en la salud por el consumo de metales en las partes cárnicas. Metodología: Los metales pesados se analizaron utilizando un espectrofotómetro de absorción atómica Agilent 200 Serie A. A. La evaluación de riesgos para la salud de hombres y mujeres adultos, adolescentes y niños expuestos a los metales pesados en las diferentes partes de la carne se evaluó mediante el cociente de peligro (HQ), el índice de peligro (HI) y cálculos de riesgo incremental de cáncer de por vida (ILCR). Resultados: El estudio mostró una concentración media general de metales en muestras de músculo, intestino e hígado de vaca que oscilaba entre 0,0417 ±0,0226 y 0,690 ±0,0570 mg/kg de peso fresco. Los valores de HQ y HI fueron inferiores a 1, y los valores de ILCR de los metales pesados cancerígenos oscilaron entre 1,07 × 10-7 y 7,50 × 10-5. Conclusión: Los consumidores de músculo, intestino e hígado de vaca en FCT, Abuja, Nigeria, tienen un riesgo bajo de desarrollar problemas de salud crónicos no relacionados con el cáncer, además de cáncer propiamente dicho, debido al níquel, plomo, cobalto, cadmio y cromo en las partes de carne de vaca de los mataderos en FCT, Abuya, Nigeria.
Introdução: A toxicidade de metais pesados em bovinos pode causar problemas de saúde em humanos quando estes ingerem carne de vaca poluída com metais pesados. A escassez de informações sobre o nível de metais pesados na carne bovina consumida no Território da Capital Federal (FCT), Abuja, Nigéria, e o risco associado à saúde humana levou a este estudo. Objetivo: determinar o nível de metais pesados - níquel, chumbo, cobalto, cádmio e cromo no músculo, intestino e fígado de vacas de matadouros no Território da Capital Federal (FCT), Abuja, Nigéria, bem como a saúde risco de consumo dos metais nas partes da carne. Metodologia: Os metais pesados foram dosados usando Espectrofotômetro de Absorção Atômica Agilent 200 Série A. A. A avaliação do risco à saúde de homens e mulheres adultos expostos, adolescentes e crianças aos metais pesados nas partes da carne foi avaliada através do quociente de perigo (HQ), índice de perigo (HI) e cálculos incrementais de risco de câncer ao longo da vida (ILCR). Resultados: O resultado do estudo mostrou concentração média global dos metais em amostras de músculo, intestino e fígado de vaca variando de 0,0417 ±0,0226 a 0,690 ±0,0570 mg/kg, peso fresco. Os valores de HQ e HI foram inferiores a 1, e os valores de ILCR dos metais pesados cancerígenos variaram de 1,07 × 10-7 a 7,50 × 10-5. Conclusão: Os consumidores de músculo, intestino e fígado de vaca na FCT, Abuja, Nigéria, apresentam baixo risco de desenvolver problemas crónicos não cancerígenos relacionados com a saúde e cancro devido ao níquel, chumbo, cobalto, cádmio e crómio em partes de carne de vaca provenientes de matadouros em FCT, Abuja, Nigéria.
Referencias
1. H.I. Kubkomawa, Indigenous breeds of cattle, their productivity, economic and cultural values in sub-Saharan Africa. A review, International Journal of Research Studies in Agricultural Sciences, 3(1), 27-43 (2017). Doi: https://doi.org/10.20431/2454-6224.0301004
2. K.A. Olatunde, J.A. Oyebola, B.S. Baba, A.M. Taiwo, Z.O. Ojekunle, Assessment of heavy metal pollution of wetlands soils in Ijokodo, Oyo State, Nigeria, Journal of Meteorology and Climate Science, 19(1), 22-28 (2021). URL: https://www.ajol.info/index.php/jmcs/article/view/221023
3. A.F. Egbonwanre, M.C. Nwosisi, O. Osarenotor, Assessment of heavy metal pollution of surface soils from scrapyards in Benin City, Nigeria, Journal of Waste Management and Xenobiotic, 2(3), 000132 (2019). URL: https://medwinpublishers.com/OAJWX/OAJWX16000132.pdf
4. A.S. Olatunji, T. Kolawole, M.O. Oloruntola, C. Gunter, Evaluation of pollution of soil and particulate matter around metal recycling factories in Southwestern Nigeria, Journal of Health and Pollution, 8(17), 20-30 (2018). Doi: https://doi.org/10.5696/2156-9614-8.17.20
5. A.J. Adewunmi, Heavy metals in soils and road dust in Akure City, Southwest Nigeria: Pollution sources, ecological and health risk, Exposure and Health, 14, 375-392 (2022). Doi: https://doi.org/10.1007/s12403-021-00456-y
6. S.M. Yahaya, F. Abubakar, N. Abudu, Ecological risk assessment of heavy metal contaminated soils of selected villages in Zamfara State, Nigeria, SN Applied Sciences, 3, 168 (2021). Doi: https://doi.org/10.1007/s42452-021-04175-6
7. E.C. Ogoko, D. Emeziem, Pollution load index and enrichment of heavy metals in soil within the vicinity of Nigeria, Journal of Chemical Society of Nigeria, 44(4), 653-660 (2019). URL: https://journals.chemsociety.org.ng/index.php/jcsn/article/view/317/375
8. O.H. Adedeji, O.S. Olayinka, F.F. Oyebanji, Assessment of traffic related heavy metals pollution of roadside soils in emerging urban centres in Ijebu – North Area of Ogun State, Nigeria, Journal of Applied Science and Environmental Management, 17(4), 504-514 (2013). URL: https://www.bioline.org.br/pdf ?ja13057
9. D.O. Olukanni, S.A. Adebiyi, Assessment of vehicular pollution of road side soils in Ota Metropolis, Ogun State, Nigeria, International Journal of Civil and Environmental Engineering, 12(4), 40-46 (2021). URL: https://www.ijens.org/IJCEEVol12Issue04.html
10. K.O. Ayinde, S.M. Omotosho, O.O. Oyesiku, R.T. Feyisola, A.L. Asida, Evaluation of heavy metal pollution from vehicular exhausts in soils along a highway, Southwestern, Nigeria, International Journal of Environment, Agriculture and Biotechnology, 5(6), 1404-1414 (2020). Doi: https://doi.org/10.22161/ijeab.56.2
11. N. Onojake, O. Frank, Assessment of heavy metal in soil contaminated by oil: A case study in Nigeria, Chemistry and Ecology, 29(3), 246-254 (2022). Doi: https://doi.org/10.1080/02757540.2012.717619
12. B.T. Udoh, E.D. Chukwu, Post-impact assessment of oil pollution on some soil characteristics in Ikot Abasi, Niger Delta Region, Nigeria, Journal of Biology, Agriculture and Healthcare, 4(24), 111-119 (2014). URL: https://www.iiste.org/Journals/index.php/JBAH/article/view/16894/17226
13. P.O. Fatoba, C.O. Ogeenkunle, O.O. Folarin, F.A. Oladele, Heavy metal pollution and ecological geochemistry of soil impacted by activities of oil industry in the Niger Delta, Nigeria, Environmental Earth Sciences, 75, 297 (2016). Doi: https://doi.org/10.1007/s12665-015-5145-5
14. F. Odili, K. Njoku, A. Soyoye, Heavy metals in soils and plants around industries in Agbara Industrial Estate, Ogun State, Nigeria, Journal of Geoscience and Environment Protection, 6(12), 61-69 (2018). Doi: https://doi.org/10.4236/gep.2018.612004
15. P.O. Oyeleke, O.A. Abiodun, R.A. Salako, O.E. Odeyemi, T.B. Abejide, Assessment of some heavy metals in the surrounding soils of an automobile battery factory in Ibadan, Nigeria, African Journal of Environmental Science and Technology, 10(1), 1-8 (2016). Doi: https://doi.org/10.5897/ajest2015.1986
16. B. Edogbo, E. Okolocha, B. Maikai, T. Aluwong, C. Uchendu, Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano State, Nigeria, Scientific African, 7, e00281 (2020). Doi: https://doi.org/10.1016/j.sciaf.2020.e00281
17. C.E. Emelumonye, A.M. Oroke, E.I. Nwafor, A.C. Eze, C.J. Almonte, Assessment of heavy metal concentration in the soil of Ugwuaji solid waste dump environs, Enugu Nigeria, IAMURE International Journal of Ecology and Conservation, 32(1), 37-48 (2020). URL: https://ejournals.ph/article.php?id=15312
18. J.O. Azeez, O.A. Hassan, P.O. Egunjobi, Soil contamination at dumpsites: implication of soil heavy metals distribution in municipal solid waste disposal system: A case study of Abeokuta, Southwestern Nigeria, Soil and Sediment Contamination: An International Journal, 20(4), 370-386 (2011). Doi: https://doi.org/10.1080/15320383.2011.571312
19. J.K. Nduka, H.I. Kelle, J.O. Amuka, Health risk assessment of cadmium, chromium and nickel from car paint dust from used automobiles at auto-panel workshops in Nigeria, Toxicology Reports, 6, 449-456 (2019). Doi: https://doi.org/10.1016/j.toxrep.2019.05.007
20. H.I. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecological of hazardous heavy metals. Environmental persistence, toxicity and bioaccumulation, Journal of Chemistry, 2019, 6730305 (2019). Doi: https://doi.org/10.1155/2019/6730305
21. S. Mentese O.T. Yayintas, B. Bas, L.C. Irkin, S. Yilma, Heavy metal and mineral composition of soil, atmospheric deposition, and mosses with regard to integrated pollution assessment approach, Environmental Management, 67, 833-851 (2021). Doi: https://doi.org/10.1007/s00267-021-01453-2
22. L. Blake, K.W.T. Goulding, Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK, Plant and Soil, 240(2), 235-251 (2022). Doi: https://doi.org/10.1023/A:1015731530498
23. M.O. Fashola, V.M. Ngole-Jeme, O.O. Babalola, Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance, International Journal of Environmental Research and Public Health, 13(11), 1047 (2016). Doi: https://doi.org/10.3390/ijerph13111047
24. C.J. Matocha, E.J. Elzinga, D.L. Sparks, Reactivity of Pb(II) at the Mn(III, IV) (oxyhydr)oxide-water interface, Environmental Science & Technology, 35(14), 2967-2972 (2001). Doi: https://doi.org/10.1021/es0012164
25. J.O. Nriagu, P. Bhattacharya, A.B. Mukherjee, J. Bundschuh, R. Zevenhoven, R.H. Loeppert, Arsenic in soil and groundwater: An overview, Trace Metals and other Contaminants in the Environment, 9, 3-60 (2007). Doi: https://doi.org/10.1016/S1875-1121(06)09001-8
26. F. Molnar, Cobalt in orogenic gold mineral systems of Northern FennosScandia, 3rd Progress Meeting (7-10 October, 2019), Pohtimolampi, Rovaniemi, Finland, 2019. URL: https://www.researchgate.net/publication/336798739_COBALT_IN_OROGENIC_GOLD_MINERAL_SYSTEMS_OF_NORTHERN_FENNOSCANDIA#fullTextFileContent
27. E. Ferreira da Silva, C. Zhang, L. Serrano-Pinto, C. Patinha, P. Reis, Hazard assessment on arsenic and lead in soils of Castromil gold mining area, Portugal, Applied Geochemistry, 19(6), 887-898 (2004). Doi: https://doi.org/10.1016/j.apgeochem.2003.10.010
28. O.E. Orisakwe, O.O. Oladipo, G.C. Ajaezi, N.A. Udowelle, Horizontal and vertical distribution of heavy metals in farm produce and livestock around lead – contaminated goldmine in Dareta and Abare, Zamfara state, Northern Nigeria, Journal of Environmental and Public Health, 2017, 3506949 (2017). Doi: https://doi.org/10.1155/2017/3506949
29. U.A. Birnin-Yauri, M.K. Musa, S.M. Alhaji, Determination of selected heavy metals in the organs of some animals reared in the gold-mining areas of Zamfara State, Nigeria, Journal of Agricultural Chemistry and Environment, 7(4), 188-202 (2018). Doi: https://doi.org/10.4236/jacen.2018.74016
30. J.M. Wilkinson, J. Hill, C.J.C. Phillips, The accumulation of potentially toxic metals by grazing ruminants, Proceedings of the Nutrition Society, 62(2), 267-277 (2003). Doi: https://doi.org/10.1079/pns2003209
31. WHO, Trace elements in human nutrition and health, World Health Organization, Geneva, 1996, 360 p. URL: https://www.who.int/publications/i/item/9241561734
32. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metals toxicity and the environment, in: A. Luch (editor), Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101, Springer, Basel, 2012, pp. 133-164. Doi: https://doi.org/10.1007/978-3-7643-8340-4-6
33. G. Genchi, M.S. Sinicropi, L. Graziantonio, A. Carocci, A. Catalona, The effects of cadmium toxicity, International Journal of Environmental Research and Public Health, 17(11), 3782 (2020). Doi: https://doi.org/10.3390/ijerph17113782
34. Agency for Toxic Substances and Disease Registry, Case Studies in Environmental Medicine (CSEM), Chromium Toxicity, WB 1466, 2008, 67 p. URL: https://www.atsdr.cdc.gov/csem/chromium/docs/chromium.pdf
35. WHO, Lead Poisoning, World Health Organization, Geneve, 2022. URL: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-andhealth#:~:text=Lead%20exposure%20can%20have%20serious,intellectual%20disability%20and%20behavioural%20disorders.
36. National Institute for Occupational Safety and Health (NIOSH), Cobalt, Center for Disease Control and Prevention, U.S. Department of Health & Human Services, Washington, D.C., 2022. URL: https://www.cdc.gov/niosh/topics/cobalt/default.html
37. G. Genchi, A. Carocci, G. Lauria, M.S. Sinicroppi, A. Catalano, Nickel: Human health and environmental toxicology, International Journal of Environmental Research and Public Health, 17(3), 679 (2020). Doi: https://doi.org/10.3390/ijerph17030679
38. K.M. Adelakun, A.S. Kehinde, D.A. Joshua, A.O. Ibrahim, T.G. Akinade, Heavy metals in bushmeat from New-Bussa and its environs, Nigeria, Journal of Applied Science and Environmental Management, 24(4), 667-671 (2020). Doi: https://doi.org/10.4314/jasem.v24i4.19
39. O.M. Makanjuola, Assessment of heavy metal in raw meat sold in some notable garages in Ogun State, South West, Nigeria, International Journal of Research Studies in Biosciences, 4(9), 10-13 (2016). Doi: https://doi.org/10.20431/2349-0365.0409003
40. J.N. Ihedioha, C.O.B. Okoye, U.A. Onyechi, Health risk assessment of zinc, chromium, and nickel from cow meat consumption in urban Nigerian population, International Journal of Occupational and Environmental Health, 20(4), 281-288 (20114). Doi: https://doi.org/10.1179/2049396714Y.0000000075
41. S. Usman, U.S. Lawal, A.A. Oladimeji, Heavy metals in slaughtered cow meat in Kaduna State, Nigeria, Annals of Epidemiology and Public Health, 5(1), 1081 (2022). URL: https://meddocsonline.org/annals-of-epidemiology-and-publichealth/heavy-metals-in-slaughtered-cow-meat-in-kaduna-state-nigeria.pdf
42. US-EPA, Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Vol. 1: Fish Sampling and Analysis, 3rd ed., Office of Science and Technology, Office of Water, U.S. Environmental Protection Agency, Washington, D.C., 2000, 485 p. URL: https://www.epa.gov/sites/default/files/2015-06/documents/volume1.pdf
43. US-EPA, Framework for Human Health Risk Assessment to Inform Decision Making, Office of the Science Advisor, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C., 2014, 77 p. URL: https://archive.epa.gov/raf/web/pdf/hhra-framework-final-2014.pdf
44. US-EPA, Human Health Risk Assessment Protocol, Chapter 6: Quantifying Exposure, Multimedia Planning and Permitting Division, Center for Combustion Science and Engineering, Office of Solid Waste, U.S. Environmental Protection Agency, Washington, D.C., 2005, 23 p. https://archive.epa.gov/epawaste/hazard/tsd/td/web/pdf/05hhrap6.pdf
45. M.L. Brusseau, L.L. Pepper, C.P. Gerba (editors), Environmental and Pollution Science, 3rd ed., Elsevier, Inc., 2019, pp. 541-563. URL: https://shop.elsevier.com/books/environmental-and-pollution-science/brusseau/978-0-12-814719-1
46. X. Huang, D. Qin, L. Gao, Q. Hao, Z. Chen, P. Wang, S. Tang, S. Wu, H. Jiang, W. Qiu, Distribution, contents and health risk assessment of heavy metal(loid)s in fish from different water bodies in Northeast China, RSC Advances, 9(57), 33130-33139 (2019). Doi: https://doi.org/10.1039/C9RA05227E
47. H.F. Kamaly, A.A. Sharkawy, Health risk assessment of metals in chicken meat and liver in Egypt, Environmental Monitoring and Assessment, 195(7), 802 (2023). Doi: https://doi.org/10.1007/s10661-023-11365-9
48. N.K. Kortei, M.E. Heymann, E.K. Essuman, F.M. Kpodo, P.T. Akonor, S.Y. Lokpo, N.O. Boadi, M. Ayim-Akonor, C. Tettey, Health risk assessment and levels of toxic metals in fishes (Oreochromis noliticus and Clarias anguillaris) from Ankobrah and Pra basins: Impact of illegal mining activities on food safety, Toxicology Reports, 7, 360-369 (2020). Doi: https://doi.org/10.1016/j.toxrep.2020.02.011
49. Y. Wang, D. Cao, J. Qin, S. Zhaos, J. Lin, X. Zhang, J. Wang, M. Zhu, Deterministic and probabilistic health risk assessment of toxic metals in the daily diets of residents in industrial regions of Northern Ningxia, China, Biological Trace Element Research, 201, 4334-4348 (2023). Doi: https://doi.org/10.1007/s12011-022-03538-3
50. M. Miri, E. Akbari, A. Amrane, S.J. Jafari, H. Eslami, E. Hoseinzadeh, M. Zarrabi, J. Salimi, M. Sayyad-Arbabi, M. Taghavi, Health risk assessment of heavy metal intake due to fish consumption in the Sistan region, Iran, Environmental Monitoring Assessment, 189, 583 (2017). Doi: https://doi.org/10.1007/s10661-017-6286-7
51. The World Bank, Life Expectancy at birth, total (years), 2018. URL: https://data.worldbank.org/indicator/SP.DYN.LE00.IN?location=NG
52. F.A. Khalafalla, F.H. Ali, F. Schwagele, M.A. Abd-El-Wahab, Heavy metal residues in beef carcasses in Beni-Suef abattoir, Egypt, Veterinaria Italiana, 47(3), 351-361 (2011). URL: https://www.izs.it/vet_italiana/2011/47_3/351.pdf
53. R.P. Hausinger (editor), Biochemistry of Nickel, Springer, Boston, MA, 1993, pp. 221-269. Doi: https://doi.org/10.1007/978-1-4757-9435-9_9
54. M. Cempel, K. Janicka, Distribution of nickel, zinc and copper in rat organs after oral administration of nickel(II) chloride, Biological Trace Element Research, 90, 215-226 (2002). Doi: https://doi.org/10.1385/BTER:90:1-3:215
55. WHO, Nickel, nickel carbonyl and some nickel compounds. Health and safety guide, No 62, World Health Organization, Geneva, 1991, 51 p. URL: https://wedocs.unep.org/bitstream/handle/20.500.11822/29609/HSG62Nickel.pdf ?sequence=1&isAllowed=y
56. C.M.A. Iwegbue, Heavy metal composition of livers and kidneys of cattle from southern Nigeria, Veterinarski Arhiv, 78(5), 401-410 (2008). URL: https://www.researchgate.net/publication/288418826_Heavy_metal_composition_of_livers_and_kidneys_of_cattle_from_southern_Nigeria
57. E.T. Ogbomida, S.M.M. Nakayama, N. Bortey-Sam, B. Oroszlany, I. Tongo, A.A. Enuneku, O. Ozekeke, M.O. Ainerua, I.P. Fasipe, L.K. Ezemonye, H. Mizukawa, Y. Ikenaka, M. Ishizuka, Accumulation patterns and risk assessment of metals and metalloids in muscle and offal of free-range chickens, cattle and goat in Benin City, Ecotoxicology and Environmental Safety, 151, 98-108 (2018). Doi: https://doi.org/10.1016/j.ecoenv.2017.12.069
58. UN-FAO/WHO, General standards for contaminants and toxins in food and feed, Codex Alimentarius 193-1995, International food standards, Food and Agriculture Organization of the United Nations/World Health Organization, Geneva, 2019, 39 p. URL: https://www.fao.org/fileadmin/user_upload/agns/pdf/CXS_193e.pdf
59. A.L. Wani, A. Ara, J.A. Usmani, Lead toxicity: a review, Interdisciplinary Toxicity, 8(2), 55-64 (2015). Doi: https://doi.org/10.1515/intox-2015-0009
60. J.K. Nduka, H.I. Kelle, E.O. Akpunonu, J.O. Amuka, G.C. Iloka, Mobility pattern, risk assessment of heavy metals in soil-dust and hazard of consuming vegetables at auto-body workshops, International Journal of Environmental Science and Technology, 20, 4943-4958 (2023). Doi: https://doi.org/10.1007/s13762-022-04288-4
61. Agency for Toxic Substances and Disease Registry, Case Studies in Environmental Medicine (CSEM): Chromium Toxicity: What are the physiologic effects of chromium exposure?, Department of Health and Human Services, Public Health Service Atlanta, Georgia, 2008, pp. 29-38. URL: https://www.atsdr.cdc.gov/csem/chromium/docs/chromium.pdf
62. Agency for Toxic Substances and Disease Registry, Public Health Statement: Cobalt CAS#: 7440-48-4, Department of Health and Human Services, Public Health Service, Atlanta, Georgia, 2004, 10 p. URL: https://www.atsdr.cdc.gov/ToxProfiles/tp33-c1-b.pdf
63. L. Leyssena, B. Vinck, C. Straetem, F. Wuyts, L. Maes, Cobalt toxicity in humans – A review of the potential sources and systematic health effects, Toxicology, 385, 43-56 (2017). Doi: https://doi.org/10.1016/j.tox.2017.05.015
64. Agency for Toxic Substances and Disease Registry, Case Studies in Environmental Medicine (CSEM): Cadmium Toxicity: What is the biological fate of cadmium in the body?, Department of Health and Human Services, Public Health Service, Atlanta, Georgia, 2008, pp. 20-21. URL: https://www.atsdr.cdc.gov/csem/cadmium/docs/cadmium.pdf
65. European Union, Setting maximum levels for certain contaminants in foodstuffs, Commission Regulation (EC) No/1881/2006, 2006. URL: https://eur-lex.europa.eu/eli/reg/2006/1881/oj
66. A.E. Sahmoun, L.D. Case, A.J. Sharon, G.C. Schwartz, Cadmium and prostate cancer: A critical epidemiologic analysis, Cancer Investigation, 23(3), 256-263 (2005). Doi: https://doi.org/10.1081/CNV-200055968
67. National Standards of the People’s Republic of China GB 2762-2012, National Food Safety Standard: Maximum Levels of Contaminants in Foods, Beijing, 2012. URL: https://www.chinesestandard.us/products/GB2762-2012
68. D. Schrenk, M. Bignami, L. Bodin, J.K. Chipman, J. del Mazo, B. Grasl-Kraupp, C. Hogstrand, L. Hoogenboom, J.-C. Leblanc, C.S. Nebbia, et al., Update of the risk assessment of nickel in food and drinking water, EFSA Journal, 8(11), e06268 (2020). Doi: https://doi.org/10.2903/j.efsa.2020.6268
69. Agence Française de Sécurité Sanitaire des Aliments, Opinion of the French Food Safety Agency on a request for scientific and technical support regarding the migration of cobalt from porcelain oven-dishes intended to come in contact with food, AFSSA-Request No. 2010.SA-0095, Maisons-Alfort, France, 2010, 6 p. URL: https://www.anses.fr/en/system/files/MCDA2010sa0095EN.pdf
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13