Publicado
Neuroprotective effect of Mauritia flexuosa on a unilateral 6-OHDA-induced Parkinson’s disease in rats
Efecto neuroprotector de Mauritia flexuosa en la enfermedad de Parkinson unilateral inducida por 6-OHDA en ratas
Efeito neuroprotetor de Mauritia flexuosa em uma doença de Parkinson unilateral induzida por 6-OHDA em ratos
DOI:
https://doi.org/10.15446/rcciquifa.v53n3.119217Palabras clave:
Mauritia flexuosa, antioxidant, neuroprotector, Parkinson Disease (en)Mauritia flexuosa, antioxidantes, neuroprotector, enfermedad de Parkinson (es)
Mauritia flexuosa, antioxidante, neuroprotetor, Doença de Parkinson (pt)
Descargas
Introduction: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and cognitive impairments, primarily due to the progressive loss of dopaminergic neurons in the substantia nigra. While there is currently no treatment to halt neuronal loss, evidence suggests that a diet rich in antioxidants may mitigate oxidative stress and disease progression. Aims: This study sought to investigate the neuroprotective effects resulting from the oral administration of ethanolic extract of Maurita flexuosa over a 21-day period, at doses of 1 mg/kg, 10 mg/kg, and 100 mg/kg. Methods: Initially, antioxidant activity assays revealed significant levels of various antioxidants, including β-carotene, gallic acid equivalent, and quercetin. A PD animal model was then induced via stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the striatum, with apomorphine-induced rotation tests used for model validation. Motor behavior assessments were performed using open field tests and beam walking tests. Results: The open field test indicated improved motor behavior in the 1 mg/kg group compared to the 6-OHDA group. However, neurohistological analysis via Western blot testing revealed potential neurotoxic effects associated with the 100 mg/kg treatment dose. Conclusions: Chronic administration of 1 mg/kg of ethanolic extract of Maurita flexuosa over 21 days demonstrated potential improvements in locomotion in a 6-OHDA-induced PD model. Nonetheless, a notable limitation of the study lies in the 6-OHDA model’s failure to induce the expected level of damage in the striatum and substantia nigra, achieving only 29% damage, whereas a total PD model typically requires 70% damage for optimal replication.
Introducción: La enfermedad de Parkinson (EP) es un trastorno neurodegenerativo caracterizado por deterioro motor y cognitivo, principalmente debido a la pérdida progresiva de neuronas dopaminérgicas en la sustancia negra. Si bien actualmente no existe un tratamiento para detener la pérdida neuronal, la evidencia sugiere que una dieta rica en antioxidantes puede mitigar el estrés oxidativo y la progresión de la enfermedad. Objetivos: Este estudio buscó investigar los efectos neuroprotectores resultantes de la administración oral de extracto etanólico de Maurita flexuosa durante un período de 21 días, en dosis de 1 mg/kg, 10 mg/kg y 100 mg/kg. Métodos: Inicialmente, los ensayos de actividad antioxidante revelaron niveles significativos de varios antioxidantes, incluidos β-caroteno, equivalente de ácido gálico y quercetina. A continuación, se indujo un modelo animal de EP mediante inyección estereotáxica de 6-hidroxidopamina (6-OHDA) en el cuerpo estriado, y se utilizaron pruebas de rotación inducidas con apomorfina para la validación del modelo. Se realizaron evaluaciones del comportamiento motor mediante pruebas de campo abierto y pruebas de marcha sobre vigas. Resultados: La prueba de campo abierto indicó una mejora del comportamiento motor en el grupo de 1 mg/kg en comparación con el grupo de 6-OHDA. Sin embargo, el análisis neurohistológico mediante pruebas de transferencia Western reveló posibles efectos neurotóxicos asociados con la dosis de tratamiento de 100 mg/kg. Conclusiones: La administración crónica de 1 mg/kg de extracto etanólico de Maurita flexuosa durante 21 días demostró posibles mejoras en la locomoción en un modelo de EP inducido por 6-OHDA. No obstante, una limitación notable del estudio radica en la incapacidad del modelo de 6-OHDA para inducir el nivel esperado de daño en el cuerpo estriado y la sustancia negra, logrando solo un 29% de daño, mientras que un modelo de EP total normalmente requiere un 70% de daño para una replicación óptima.
Introdução: A doença de Parkinson (DP) é uma doença neurodegenerativa caracterizada por deficiências motoras e cognitivas, principalmente devido à perda progressiva de neurônios dopaminérgicos na substância negra. Embora atualmente não haja tratamento para interromper a perda neuronal, as evidências sugerem que uma dieta rica em antioxidantes pode mitigar o estresse oxidativo e a progressão da doença. Objetivos: Este estudo buscou investigar os efeitos neuroprotetores resultantes da administração oral de extrato etanólico de Maurita flexuosa durante um período de 21 dias, em doses de 1 mg/kg, 10 mg/kg e 100 mg/kg. Métodos: Inicialmente, os ensaios de atividade antioxidante revelaram níveis significativos de vários antioxidantes, incluindo β-caroteno, equivalente de ácido gálico e quercetina. Um modelo animal de DP foi então induzido por injeção estereotáxica de 6-hidroxidopamina (6-OHDA) no estriado, com testes de rotação induzidos por apomorfina usados para validação do modelo. Avaliações do comportamento motor foram realizadas usando testes de campo aberto e testes de caminhada em viga. Resultados: O teste de campo aberto indicou comportamento motor melhorado no grupo de 1 mg/kg em comparação ao grupo de 6-OHDA. No entanto, a análise neuro-histológica por meio de testes de Western blot revelou potenciais efeitos neurotóxicos associados à dose de tratamento de 100 mg/kg. Conclusões: A administração crônica de 1 mg/ kg de extrato etanólico de Maurita flexuosa ao longo de 21 dias demonstrou potenciais melhorias na locomoção em um modelo de DP induzido por 6-OHDA. No entanto, uma limitação notável do estudo está na falha do modelo de 6-OHDA em induzir o nível esperado de dano no estriado e na substância negra, atingindo apenas 29% de dano, enquanto um modelo de DP total normalmente requer 70% de dano para replicação ideal.
Referencias
1. R. Martínez-Fernández, C. Gasca-Salas, A. Sánchez-Ferro, J.A. Obeso, Actualización en la enfermedad de Parkinson, Revista Médica Clínica Las Condes, 27(3), 363-379 (2016). Doi. https://doi.org/10.1016/j.rmclc.2016.06.010
2. J. Jankovic, Parkinson’s disease: Clinical features and diagnosis, Journal of Neurology, Neurosurgery & Psychiatry, 79(4), 368-376 (2008). Doi. https://doi.org/10.1136/jnnp.2007.131045
3. M.C. Rodriguez-Oroz, M. Jahanshahi, P. Krack, I. Litvan, R. Macias, E. Bezard, J.A. Obeso, Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms, The Lancet Neurology, 8(12), 1128-1139 (2009). Doi. https://doi.org/10.1016/S1474-4422(09)70293-5
4. E.R. Dorsey, B.R. Bloem, The Parkinson pandemic-A call to action, JAMA Neurology, 75(1), 9-10 (2018). Doi: https://doi.org/10.1001/jamaneurol.2017.3299
5. GBD 2015 Neurological Disorders Collaborator Group, Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015, The Lancet Neurology, 16(11), 877-897 (2017). Doi: https://doi.org/10.1016/S1474-4422(17)30299-5
6. R.A. Barker, C.H. Williams-Gray, Review: The spectrum of clinical features seen with alpha synuclein pathology, Neuropathology and Applied Neurobiology, 42(1), 6-19 (2016). Doi: https://doi.org/10.1111/nan.12303
7. W. Poewe, K. Seppi, C.M. Tanner, G.M. Halliday, P. Brundin, J. Volkmann, A.-E. Schrag, A.E. Lang, Parkinson disease, Nature Reviews Disease Primers, 3, 17013 (2017). Doi. https://doi.org/10.1038/nrdp.2017.13
8. D.S. Marín, H. Carmona, M. Ibarra, M. Gámez, Enfermedad de Parkinson: fisiopatología, diagnóstico y tratamiento, Revista Universidad Industrial de Santander. Salud UIS, 50(1), 79-92 (2018). Doi: https://doi.org/10.18273/revsal.v50n1-2018008
9. O. Patthamakanokporn, P. Puwastien, A. Nitithamyong, P.P. Sirichakwal, Changes of antioxidant activity and total phenolic compounds during storage of selected fruits, Journal of Food Composition and Analysis, 21(3), 241-248 (2008). Doi: https://doi.org/10.1016/j.jfca.2007.10.002
10. J. Bouayed, T. Bohn, Exogenous antioxidants—Double-edged swords in cellular redox state, Oxidative Medicine and Cellular Longevity, 3(4), 228-237 (2010). Doi: https://doi.org/10.4161/oxim.3.4.12858
11. B.N. Ames, M.K. Shigenaga, T.M. Hagen, Oxidants, antioxidants, and the degenerative diseases of aging, Proceedings of the National Academy of Sciences U. S. A., 90(17), 7915-7922 (1993). Doi: https://doi.org/10.1073/pnas.90.17.7915
12. J.A. Dominguez–Maytán, Polifenoles totales y capacidad antioxidante en la pulpa y cáscara de Mauritia flexuosa L.F. “aguaje”, B.Sc. thesis, Universidad Nacional Agraria de la Selva, Tingo María, Perú, 2009. URL: https://repositorio.unas.edu.pe/items/4e434e95-8ab5-4d02-a9bb-4e946c276477
13. L.K.R. Leão, A.M. Herculano, C. Maximino, A.B. Costa, A. Gouveia Jr, E.O. Batista, F.F. Rocha, M.E. Crespo-Lopez, R. Borges, K. Oliveira, Mauritia flexuosa L. protects against deficits in memory acquisition and oxidative stress in rat hippocampus induced by methylmercury exposure, Nutritional Neuroscience, 20(5), 297-304 (2017). Doi: https://doi.org/10.1080/1028415X.2015.1133030
14. J. Restrepo, N. Arias, C. Madriñán, Determinación del valor nutricional, perfil de ácidos grasos y capacidad antioxidante de la pulpa de aguaje (Mauritia flexuosa), Revista de Ciencias (Cali, Colombia), 20(1), 71-78 (2016). URL: https://bibliotecadigital.univalle.edu.co/server/api/core/bitstreams/b5223032-5b95-4ffb-a90e-024429a08c2a/content
15. H.H.F. Koolen, F.M.A. da Silva, F.C. Gozzo, A.Q.L. de Souza, A.D.L. deSouza, Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC–ESI-MS/MS, Food Research International, 51(2), 467-473 (2013). Doi: https://doi.org/10.1016/j.foodres.2013.01.039
16. L.R. Trajano-Manhães, A.U.O. Sabaa-Srur, Centesimal composition and bioactive compounds in fruits of buriti collected in Pará, Ciência e Tecnologia de Alimentos (Campinas), 31(4), 856-863 (2011). Doi: https://doi.org/10.1590/S0101-20612011000400005
17. A.B. Zanqui, T.V. Barros, C.E. Barão, C. da Silva, L. Cardozo-Filho, Production of blends of edible oil and carrot carotenoids using compressed propane: Enhancement of stability and nutritional characteristics, The Journal of Supercritical Fluids, 171, 105189 (2021). Doi: https://doi.org/10.1016/j.supflu.2021.105189
18. C.S. Zubia, G.M.O. Babaran, S.M.M. Duque, L.E. Mopera, L.E.L. Flandez, K.A.T. Castillo-Israel, F.C. Reginio Jr., Impact of drying on the bioactive compounds and antioxidant properties of bignay [Antidesma bunius (L.) Spreng.] pomace, Food Production, Processing and Nutrition, 5(1), 11 (2023). Doi: https://doi.org/10.1186/s43014-022-00122-z
19. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine, 26(9-10), 1231-1237 (1999). Doi: https://doi.org/10.1016/S0891-5849(98)00315-3
20. M. Al-Duais, L. Müller, V. Böhm, G. Jetschke, Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: use of different assays, European Food Research and Technology, 228(5), 813-821 (2009). Doi: https://doi.org/10.1007/s00217-008-0994-8
21. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Guide for the Care and Use of Laboratory Animals, 8th ed., National Academies Press (US), Washington (DC), 2011. URL: http://www.ncbi.nlm.nih.gov/books/NBK54050/
22. M. Bigham, A. Mohammadipour, M. Hosseini, A. M. Malvandi, A. Ebrahimzadeh-Bideskan, Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson’s disease: motor and non-motor outcomes, Metabolic Brain Disease, 36(5), 927-937 (2021). Doi: https://doi.org/10.1007/s11011-021-00705-8
23. J.C. Tobón-Velasco, V. Palafox-Sánchez, L. Mendieta, E. García, A. Santamaría, G. Chamorro-Cevallos, I.D. Limón, Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum, Journal of Neural Transmission, 120(8), 1179-1189 (2013). Doi: https://doi.org/10.1007/s00702-013-0976-2
24. X. Shi, Y.-H.Chen, H. Liu, H.-D. Qu, Therapeutic effects of paeonol on methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson’s disease in mice, Molecular Medicine Reports, 14(3), 2397-2404 (2016). Doi: https://doi.org/10.3892/mmr.2016.5573
25. J.A. Obeso, J.L. Lanciego, Past, present, and future of the pathophysiological model of the basal ganglia, Frontiers in Neuroanatomy, 5, 39 (2011). Doi: https://doi.org/10.3389/fnana.2011.00039
26. A.V. Kalueff, A.M. Stewart, C. Song, K.C. Berridge, A.M. Graybiel, J.C. Fentress, Neurobiology of rodent self-grooming and its value for translational neuroscience, Nature Reviews: Neuroscience, 17(1), 45-59 (2016). Doi: https://doi.org/10.1038/nrn.2015.8
27. H. Daniel, R. Rajan, Neuro-behavioral modification of Bacopa Monnieri in rotenone induced hemi-Parkinson’s disease model of male Wistar albino rats, Journal of Pharmacognosy and Phytochemistry, 8(4), 1275-1280 (2019). URL: https://www.phytojournal.com/archives/2019/vol8issue4/PartV/8-4-220-446.pdf
28. L. Blanco-Lezcano, L.d.C. Lorigados-Pedre, C.I. Fernández-Verdecia, T. Serrano-Sánchez, N. Pavón-Fuentes, L.F. Turner, Aplicación del test de la barra transversal modificado para evaluar ratas hemiparkinsonizadas, Acta Biológica Colombiana, 15(2), 189-201 (2010). URL: http://scielo.org.co/pdf/abc/v15n2/v15n2a13.pdf
29. S. Nourmohammadi, S. Yousefi, M. Manouchehrabadi, M. Farhadi, Z. Azizi, A. Torkaman-Boutorabi, Thymol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease via inhibiting oxidative stress, BMC Complementary Medicine and Therapies, 22(1), 40 (2022). Doi: https://doi.org/10.1186/s12906-022-03524-1
30. R.K. Chaturvedi, S. Shukla, K. Seth, S. Chauhan, C. Sinha, Y. Shukla, A.K. Agrawal, Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease, Neurobiology of Disease, 22(2), 421-434 (2006). Doi: https://doi.org/10.1016/j.nbd.2005.12.008
31. D.D. Vecchia, M.G. Schamne, M. Machado-Ferro, A.F. Chaves dos Santos, C.L. Latyki, D. Vieira de Lara, J. Ben, E.L. Moreira, R.D. Prediger, E. Miyoshi, Effects of Hypericum perforatum on turning behavior in an animal model of Parkinson’s disease, Brazilian Journal of Pharmaceutical Sciences, 51(1), 111-115 (2015). Doi. https://doi.org/10.1590/S1984-82502015000100012
32. R. Iancu, P. Mohapel, P. Brundin, G. Paul, Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice, Behavioural Brain Research, 162(1), 1-10 (2005). Doi: https://doi.org/10.1016/j.bbr.2005.02.023
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13