Publicado
Predicting drug solubility in cosolvent systems using artificial intelligence algorithms
Predicción de la solubilidad de fármacos en sistemas cosolventes mediante algoritmos de inteligencia artificial
Predição da solubilidade de fármacos em sistemas cosolventes usando algoritmos de inteligência artificial
DOI:
https://doi.org/10.15446/rcciquifa.v54n1.119553Palabras clave:
solubility, drugs, pharmacy, artificial intelligence, neural network (en)Solubilidad, fármacos, farmacia, inteligencia artificial, red neuronal (es)
Solubilidade, drogas, farmácia, inteligência artificial, rede neural (pt)
Descargas
Introduction: Solubility is one of the most important physicochemical properties in the pharmaceutical sciences and is involved in processes ranging from drug development to environmental biotoxicity assessment. Accurate prediction of solubility, especially aqueous solubility, has been a scientific challenge due to the complexity of the dissolution process, which involves lattice energies, solvation, solute ionization, and solute-solvent interactions. While various approaches have been used to predict solubility, such as semi-empirical models and group contribution methods, accurate prediction remains difficult. Statistical and machine learning approaches often use numerous descriptors, making rational interpretation and refinement of prediction models difficult. Purpose: This study proposes an approach based on autonomous learning, specifically using a neural network model. Experimental and theoretical descriptors are carefully selected according to their relevance to physicochemical aspects of the dissolution process. Methodology: A solubility data set of four structurally related sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine, sulfamethazine, and sulfacetamide) in different solvents under different temperature conditions and cosolvent composition is used to develop an artificial neural network model using less than 37 descriptors. Results: The developed AI algorithm shows acceptable correlation with experimental data, suggesting its potential as an approximation tool for optimizing solubility-related processes in the pharmaceutical industry.
Introducción: La solubilidad es una de las propiedades fisicoquímicas más importantes en las ciencias farmacéuticas, esta propiedad está involucrada en diversos procesos, desde el desarrollo de fármacos hasta la evaluación de la biotoxicidad en el campo ambiental. La predicción precisa de la solubilidad, particularmente la solubilidad acuosa, ha sido un desafío científico debido a la complejidad del proceso de disolución, que involucra energías de red, solvatación, ionización del soluto e interacciones soluto-solvente. Si bien se han utilizado diversos enfoques para predecir la solubilidad, como modelos semiempíricos y métodos de contribución de grupos, la predicción precisa sigue siendo difícil. Los enfoques estadísticos y de aprendizaje automático a menudo emplean numerosos descriptores, lo que dificulta la interpretación racional y el perfeccionamiento de los modelos de predicción. Objetivo: Este estudio se propone un enfoque basado en el aprendizaje autónomo, específicamente mediante un modelo de red neuronal. Se seleccionan cuidadosamente descriptores experimentales y teóricos de acuerdo con su relevancia para los aspectos fisicoquímicos del proceso de disolución. Metodología: Se utiliza un conjunto de datos de solubilidad de cuatro sulfonamidas estructuralmente relacionadas (sulfadiazina, sulfamerazina, sulfametazina y sulfacetamida) en varios solventes bajo diferentes condiciones de temperatura y composición de cosolvente, desarrollando un modelo de redes neuronales artificiales utilizando bajo 37 descriptores. Resultados: El algoritmo de IA desarrollado muestra una correlación aceptable con los datos experimentales, lo que sugiere su potencial como herramienta de aproximación para optimizar los procesos relacionados con la solubilidad en la industria farmacéutica.
Introdução: Solubilidade é uma das propriedades físico-químicas mais importantes nas ciências farmacêuticas. Esta propriedade está envolvida em vários processos, desde o desenvolvimento de fármacos até a avaliação da biotoxicidade no campo ambiental. A previsão precisa da solubilidade, particularmente da solubilidade aquosa, tem sido um desafio científico devido à complexidade do processo de dissolução, que envolve energias de rede, solvatação, ionização do soluto e interações soluto-solvente. Embora várias abordagens tenham sido usadas para prever a solubilidade, como modelos semi-empíricos e métodos de contribuição de grupo, a previsão precisa continua difícil. Abordagens estatísticas e de aprendizado de máquina geralmente empregam vários descritores, dificultando a interpretação racional e o refinamento dos modelos de previsão. Objetivo: Este estudo propõe uma abordagem baseada na aprendizagem autônoma, especificamente utilizando um modelo de rede neural. Descritores experimentais e teóricos são cuidadosamente selecionados de acordo com sua relevância para os aspectos físico-químicos do processo de dissolução. Metodologia: Um conjunto de dados de solubilidade de quatro sulfonamidas estruturalmente relacionadas (sulfadiazina, sulfamerazina, sulfametazina e sulfacetamida) em vários solventes sob diferentes condições de temperatura e composição de cosolvente é usado, desenvolvendo um modelo de rede neural artificial usando menos de 37 descritores. Conclusão: O algoritmo de IA desenvolvido mostra correlação aceitável com dados experimentais, sugerindo seu potencial como uma ferramenta de aproximação para otimizar processos relacionados à solubilidade na indústria farmacêutica.
Referencias
1. A.N. Martin, P. Bustamante & A.H.C. Chun. Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences, 4th ed. Lippincott Williams & Wilkins, Philadelphia (PA), 1993.
2. J.H. Blanco-Márquez, Y.A. Quigua-Medina, J.D. García-Murillo, J.K. Castro-Camacho, C.P. Ortiz, N.E. Cerquera & D.R. Delgado. Thermodynamic analysis and applications of the Abraham solva-tion parameter model in the study of the solubility of some sulfonamides. Rev. Colomb. Cienc. Quím. Farm., 49(1), 234–255 (2020). Doi: https://doi.org/10.15446/rcciquifa.v49n1.87038
3. C.P. Ortiz, R.E. Cardenas-Torres, M. Herrera & D.R. Delgado. Numerical analysis of sulfamerazine solubility in acetonitrile + 1-propanol cosolvent mixtures at different temperatures. Sustainability (Basel), 15(8), 6596 (2023). Doi. https://doi.org/10.3390/SU15086596
4. C.P. Ortiz, R.E. Cardenas-Torres, M. Herrera, & D.R. Delgado. Thermodynamic analysis of the sol-ubility of propylparaben in acetonitrile–water cosolvent mixtures. Sustainability (Basel), 15(6), 4795 (2023). Doi: https://doi.org/10.3390/SU15064795
5. M. Khoubnasabjafari, D.R. Delgado, F. Martinez, A. Jouyban & W.E. Acree. Predicting the solubil-ity, thermodynamic properties and preferential solvation of sulphamethazine in {acetonitrile + wa-ter} mixtures using a minimum number of experimental data points. Phys. Chem. Liq., 59(3), 400–411 (2021). Doi: https://doi.org/10.1080/00319104.2020.1731812
6. N. Jain % S.H. Yalkowsky. Estimation of the aqueous solubility I: Application to organic nonelec-trolytes. J. Pharm. Sci., 90(2), 234–252 (2001). Doi: https://doi.org/10.1002/1520-6017(200102)90:2<234::aid-jps14>3.0.co;2-v
7. S.H. Yalkowsky, Y. He & P. Jain. Handbook of Aqueous Solubility Data, 2nd ed. CRC Press, Boca Raton (FL), 2016. Doi: https://doi.org/10.1201/ebk1439802458
8. R. Kuhne, R.‐U. Ebert, F. Kleint, G. Schmidt & G. Schuurmann. Group contribution methods to estimate water solubility of organic chemicals. Chemosphere, 30(11), 2061–2077 (1995). Doi: https://doi.org/10.1016/0045-6535(95)00084-L
9. A. Fredenslund, R.L. Jones & J.M. Prausnitz, Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J., 21(6), 1086–1099 (1975). Doi: https://doi.org/10.1002/AIC.690210607
10. D.J.W. Grant, M. Mehdizadeh, A.H.L. Chow & J.E. Fairbrother. Non-linear van’t Hoff solubility-temperature plots and their pharmaceutical interpretation. Int. J. Pharm., 18(1-2), 25–38 (1984). Doi: https://doi.org/10.1016/0378-5173(84)90104-2
11. A. Martin, P.L. Wu, A. Adjei, R.E. Lindstrom & P.H. Elworthy. Extended Hildebrand solubility approach and the log linear solubility equation. J. Pharm. Sci., 71(8) 849–856 (1982). Doi: https://doi.org/10.1002/jps.2600710803
12. D.M. Cristancho, D.R. Delgado & F. Martínez. Meloxicam solubility in ethanol+water mixtures ac-cording to the extended Hildebrand solubility approach. J. Solution Chem., 42, 1706–1716 (2013). Doi: https://doi.org/10.1007/s10953-013-0058-y
13. J.H. Hildebrand. A criticism of the term “hydrophobic bond”. J. Phys. Chem., 72(5), 1841–1842 (1968). Doi: https://doi.org/10.1021/j100851a092
14. W. Weibull. A statistical distribution function of wide applicability. J. Appl. Mechan., 18(3), 293–297 (1951). Doi: https://doi.org/10.1115/1.4010337
15. M. Svärd & Å.C. Rasmuson. (Solid + liquid) solubility of organic compounds in organic solvents – Correlation and extrapolation. J. Chem. Thermodyn., 76, 124–133 (2014). Doi: https://doi.org/10.1016/j.jct.2014.03.013
16. H. Buchowski, A. Ksiazczak % S. Pietrzyk. Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem., 84(9), 975–979 (1980). Doi: https://doi.org/10.1021/J100446A008
17. R.T. Hardman & J.R. Partington. CXCIX.—An application of Kirchhoff’s equation to solutions. (A contribution to the thermodynamic theory of solubility.). J. Chem. Soc., Trans., 99, 1769–1775 (1911). Doi: https://doi.org/10.1039/ct9119901769
18. S. Jin, X. Cui, Y. Qi, Y. Shen & H. Li. Measurement and correlation of the solubility of β-cyclodextrin in different solutions at different temperatures and thermodynamic study of the dissolution pro-cess. Processes, 7(3), 135 (2019). Doi: https://doi.org/10.3390/pr7030135
19. B.S. Liu, J.B. Gong, J.K. Wang & C.Y. Jia. Solubility of potassium clavulanate in ethanol, 1-propanol, 1-butanol, 2-propanol, and 2-methyl-1-propanol between 273 K and 305 K. J. Chem. Eng. Data, 50(5), 1684–1686 (2005). Doi: https://doi.org/10.1021/JE050145R
20. J.M. Prausnitz, R.N. Lichtenthaler & E. Gomes de Azevedo. Termodinamica Molecular de los Equili-brios de Fases, 3rd ed. Prentice Hall, Madrid, 2000.
21. J.W. McCargar, A.I. Zvaigzne & I.L. Teng. Mathematical representation of thermodynamic prop-erties. Carbazole solubilities in binary alkane + dibutyl ether and alkane + tetrahydropyran solvent mixtures. Phys. Chem. Liq., 23(1), 27–35 (1991). Doi: https://doi.org/10.1080/00319109108030630
22. A. Torres-Cardozo, N.E. Cerquera, C.P. Ortiz, J. Osorio-Gallego, R.E. Cardenas-Torres, F. Angarita-Reina, F. Martinez & D.R. Delgado. Thermodynamic analysis of the solubility of progesterone in 1-octanol + ethanol cosolvent mixtures at different temperatures. Alexandria Eng. J., 64, 219–235 (2023). Doi: https://doi.org/10.1016/J.AEJ.2022.08.035
23. X. Yu, X. Wang, H. Wang, X. Li & J. Gao. Prediction of solubility parameters for polymers by a QSPR model. QSAR Comb. Sci., 25(2) 156–161 (2006). Doi: https://doi.org/10.1002/qsar.200530138
24. P.R. Duchowicz & E.A. Castro. QSPR studies on aqueous solubilities of drug-like compounds. Int. J. Mol. Sci., 10(6), 2558–2577 (2009). Doi: https://doi.org/10.3390/ijms10062558
25. A. Lusci, G. Pollastri & P. Baldi. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model., 53(7) 1563–1575 (2013). Doi: https://doi.org/10.1021/ci400187y
26. A. Llinas & A. Avdeef. Solubility challenge revisited after ten years, with multilab shake-flask data, using tight (SD ∼0.17 log) and loose (SD ∼0.62 log) test sets. J. Chem. Inf. Model., 59(6), 3036–3040 (2019). Doi: https://doi.org/10.1021/acs.jcim.9b00345
27. A. Llinàs, R.C. Glen & J.M. Goodman. Solubility challenge: Can you predict solubilities of 32 mol-ecules using a database of 100 reliable measurements?, J. Chem. Inf. Model., 48(7), 1289–1303 (2008). Doi: https://doi.org/10.1021/ci800058v
28. S.H. Yalkowsky. Solubility and Solubilization in Aqueous Media. American Chemical Society, Wash-ington D.C., 1999.
29. S.H. Yalkowsky & D.S. Mishra. Ideal solubility of a solid solute: Effect of heat capacity assump-tions. Pharm. Res., 9(7), 958–959 (1992). Doi: https://doi.org/10.1023/A:1015873521067
30. S.H. Yalkowsky & R. Pinal. Estimation of the aqueous solubility of complex organic molecules. Chemosphere, 26(7), 1239–1261 (1993). Doi: https://doi.org/10.1016/0045-6535(93)90179-9
31. R.E. Skyner, J.L. McDonagh, C.R. Groom, T. Van Mourik & J.B.O. Mitchell. A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys., 17, 6174–6191 (2015). Doi: https://doi.org/10.1039/c5cp00288e
32. D.S. Palmer, N.M. O’Boyle, R.C. Glen & J.B.O. Mitchell. Random forest models to predict aqueous solubility. J. Chem. Inf. Model., 47(1) 150–158 (2007). Doi : https://doi.org/10.1021/ci060164k
33. C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1, 206–215 (2019). Doi: https://doi.org/10.1038/s42256-019-0048-x
34. S. Boobier, D.R.J. Hose, A.J. Blacker & B.N. Nguyen. Machine learning with physicochemical rela-tionships: Solubility prediction in organic solvents and water. Nature Commun., 11, 5744 (2020). Doi: https://doi.org/10.1038/s41467-020-19594-z
35. C.A.M. Ortiz, N.E. Cerquera, J.K.C. Camacho, J.O. Gallego, R.E.C. Torres, M. Herrera & D.R. Del-gado. Preferential solvation of triclocarban in N-methyl-2-pyrrolidone + water cosolvent mixtures according to the Inverse Kirkwood-Buff Integrals (IKBI) method and correlation of solubility by means of some mathematical models. Rev. Colomb. Cienc. Quím. Farm., 53(1), 219–243 (2024). Doi: https://doi.org/10.15446/rcciquifa.v53n1.111422
36. D.R. Delgado, R.E. Cardenas-Torres & C.P. Ortiz. Mathematical modeling of the aqueous solubility of bioactive substances of environmental interest. Proceedings - 2022 8th International Engineering, Sciences and Technology Conference (IESTEC), Panama, Panama, pp. 498–503. Doi: https://doi.org/10.1109/iestec54539.2022.00084
37. D.R. Delgado & F. Martínez. Preferential solvation of sulfadiazine, sulfamerazine and sulfametha-zine in ethanol + water solvent mixtures according to the IKBI method. J. Mol. Liq., 193, 152–159 (2014). Doi: https://doi.org/10.1016/j.molliq.2013.12.021
38. D.R. Delgado & F. Martínez. Solution thermodynamics of sulfadiazine in some ethanol + water mixtures. J. Mol. Liq., 187, 99–105 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.06.011
39. D.R. Delgado & F. Martínez. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib., 379, 128–138 (2014). Doi: https://doi.org/10.1016/j.fluid.2014.07.013
40. D.R. Delgado, O. Bahamón-Hernandez, N.E. Cerquera, C.P. Ortiz, F. Martínez, E. Rahimpour, A. Jouyban & W.E. Acree. Solubility of sulfadiazine in (acetonitrile + methanol) mixtures: Determina-tion, correlation, dissolution thermodynamics and preferential solvation. J. Mol. Liq., 322, 114979 (2021). Doi: https://doi.org/10.1016/j.molliq.2020.114979
41. D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.A. Peña & F. Martínez. Solubility temperature de-pendence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures. Fluid Phase Equilib., 397, 26–36 (2015). Doi: https://doi.org/10.1016/j.fluid.2015.03.046
42. M.d.M. Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban & F. Martínez. Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. J. Mol. Liq., 204, 132–136 (2015). Doi: https://doi.org/10.1016/j.molliq.2015.01.047
43. A.M. Cruz-González, M.S. Vargas-Santana, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, F. Martínez, A. Jouyban & W.E. Acree. Solubility of sulfadiazine in (ethylene glycol + water) mixtures: Meas-urement, correlation, thermodynamics and preferential solvation. J. Mol. Liq., 323, 115058 (2021). Doi: https://doi.org/10.1016/j.molliq.2020.115058
44. C.F. Trujillo-Trujillo, F. Angarita-Reina, M. Herrera, C.P. Ortiz, R.E. Cardenas-Torres, F. Martinez & D.R. Delgado. Thermodynamic analysis of the solubility of sulfadiazine in (acetonitrile + 1-pro-panol) cosolvent mixtures from 278.15 K to 318.15 K. Liquids, 3(1), 7–18 (2022). Doi: https://doi.org/10.3390/liquids3010002
45. D.R. Delgado, C.P. Ortiz, F. Martínez & A. Jouyban. Equilibrium solubility of sulfadiazine in (ace-tonitrile + ethanol) mixtures: Determination, correlation, dissolution thermodynamics, and prefer-ential solvation. Int. J. Thermophys., 45, 129 (2024). Doi: https://doi.org/10.1007/S10765-024-03405-4
46. M.S. Vargas-Santana, A.M. Cruz-González, N.E. Cerquera, A.S.E. Rodriguez, R.E. Cardenas, O. Calderón-Losada, C.P. Ortiz & D.R. Delgado. Extended Hildebrand solubility approach and Yalkowsky-Roseman model for estimating the solubility of sulfadiazine and sulfamethazine in some {ethylene glycol (1) + water (2)} mixtures at several temperatures. Rev. Colomb. Cienc. Quím. Farm., 50(3), 812–836 (2022). Doi: https://doi.org/10.15446/rcciquifa.v50n3.100240
47. D.R. Delgado & F. Martínez. Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J. Solution Chem., 43, 836–852 (2014). Doi: https://doi.org/10.1007/S10953-014-0169-0
48. D.R. Delgado & F. Martínez. Solution thermodynamics and preferential solvation of sulfamerazine in methanol + water mixtures. J. Solution Chem., 44, 360–377 (2015). Doi: https://doi.org/10.1007/S10953-015-0317-1
49. D.R. Delgado & F. Martínez. Solubility and solution thermodynamics of sulfamerazine and sulfa-methazine in some ethanol + water mixtures. Fluid Phase Equilib., 360, 88–96 (2013). Doi: https://doi.org/10.1016/j.fluid.2013.09.018
50. M.S. Vargas-Santana, A.M. Cruz-González, C.P. Ortiz, D.R. Delgado, F. Martínez, M.Á. Peña, W.E. Acree & A. Jouyban. Solubility of sulfamerazine in (ethylene glycol + water) mixtures: Measure-ment, correlation, dissolution thermodynamics and preferential solvation. J. Mol. Liq., 337, 116330 (2021). Doi: https://doi.org/10.1016/j.molliq.2021.116330
51. R.E. Cárdenas-Torres, C.P. Ortiz, W.E. Acree, A. Jouyban, F. Martínez & D.R. Delgado. Thermody-namic study and preferential solvation of sulfamerazine in acetonitrile + methanol cosolvent mix-tures at different temperatures. J. Mol. Liq., 349, 118172 (2022). Doi: https://doi.org/10.1016/j.mol-liq.2021.118172
52. J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban & D.R. Delgado. Thermo-dynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + wa-ter) cosolvent mixtures at different temperatures. J. Mol. Liq., 293, 111507 (2019). Doi: https://doi.org/10.1016/j.molliq.2019.111507
53. J. Tovar-Amézquita, C. Rincón-Guio, F.E. Torres-Suarez, M.M. Florez, C.P. Ortiz, F. Martinez & D.R. Delgado. Thermodynamic assessment of the pyrazinamide dissolution process in some or-ganic solvents. Molecules, 29(21), 5089 (2024). Doi: https://doi.org/10.3390/molecules29215089
54. D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban & W.E. Acree. Solution thermo-dynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J. Chem. Thermodyn., 97, 264–276 (2016). Doi: https://doi.org/10.1016/j.jct.2016.02.002
55. A. Aydi, C.P. Ortiz, D.I. Caviedes-Rubio, C. Ayadi, S. Hbaieb & D.R. Delgado. Solution thermody-namics and preferential solvation of sulfamethazine in ethylene glycol + water mixtures. J. Taiwan Inst. Chem. Eng., 118, 68–77 (2021). Doi: https://doi.org/10.1016/j.jtice.2020.12.031
56. J.H. Blanco-Márquez, D.I. Caviedes Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez & D.R. Delgado. Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosol-vent mixtures. Fluid Phase Equilib., 505, 112361 (2020). Doi: https://doi.org/10.1016/j.fluid.2019.112361
57. D.R. Delgado, J.K. Castro-Camacho, C.P. Ortiz, D.I. Caviedes-Rubio & F. Martinez. Dissolution thermodynamics of the solubility of sulfamethazine in (acetonitrile + 1-propanol) mixtures. Phar-maceuticals, 17(12), 1594 (2024). Doi: https://doi.org/10.3390/ph17121594
58. P. Bustamante, R. Ochoa, A. Reillo & J.B. Escalera. Chameleonic effect of sulfanilamide and sulfa-methazine in solvent mixtures. solubility curves with two maxima. Chem. Pharm. Bull., 42(5), 1129–1133 (1994). Doi: https://doi.org/10.1248/cpb.42.1129
59. C.P. Ortiz, R.E. Cardenas-Torres, F. Martínez & D.R. Delgado. Solubility of sulfamethazine in the binary mixture of acetonitrile + methanol from 278.15 to 318.15 K: Measurement, dissolution ther-modynamics, preferential solvation, and correlation. Molecules, 26(24), 7588 (2021). Doi: https://doi.org/10.3390/molecules26247588
60. I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban & W.E. Acree. Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, pref-erential solvation and solute volumetric contribution at saturation. J. Mol. Liq., 297, 111889 (2020). Doi: https://doi.org/10.1016/j.molliq.2019.111889
61. S.G. Johnsen. A review of experimental solubilities and a general correlation between the temper-ature-dependent solubility and solute and solvent molar masses for binary n-alkane mixtures. Fluid Phase Equilib., 556, 113380 (2022). Doi: https://doi.org/10.1016/j.fluid.2022.113380
62. J. Tolls, J. Van Dijk, E.J.M. Verbruggen, J.L.M. Hermens, B. Loeprecht & G. Schüürmann. Aqueous solubility-molecular size relationships: A mechanistic case study using C10- to C19-alkanes. J. Phys. Chem. A, 106(11), 2760–2765 (2002). Doi: https://doi.org/10.1021/jp011755a
63. D.R. Delgado, G.A. Rodríguez & F. Martínez. Thermodynamic study of the solubility of sulfa-pyridine in some ethanol + water mixtures. J. Mol. Liq., 177, 156–161 (2013). Doi: https://doi.org/10.1016/j.molliq.2012.11.001
64. J.H. Hildebrand. Solubility. XII. Regular solutions. J. Am. Chem. Soc., 51(1), 66–80 (1929). Doi: https://doi.org/10.1021/ja01376a009
65. Y. Gong, D.J.W. Grant & H.G. Brittain. Principles of Solubility. In: P. Augustijns, M.E. Brewster (editors), Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics. Springer, New York (NY), 2007; pp. 1–27. https://doi.org/10.1007/978-0-387-69154-1_1
66. S.H. Neau, S.V. Bhandarkar & E.W. Hellmuth. Differential molar heat capacities to test ideal solu-bility estimations. Pharm. Res., 14, (1997) 601–605 (1997). Doi: https://doi.org/10.1023/A:1012148910975
67. T.M. Letcher & R. Battino. An introduction to the understanding of solubility. J. Chem. Educ., 78(1), 103–111 (2001). Doi: https://doi.org/10.1021/ed078p103
68. M.A. Parra, N.E. Cerquera, C.P. Ortiz, R.E. Cárdenas-Torres, D.R. Delgado, M.Á. Peña & F. Mar-tínez. Solubility of ciprofloxacin in different solvents at several temperatures: Measurement, corre-lation, thermodynamics and Hansen solubility parameters. J. Taiwan Inst. Chem. Eng., 150, 105028 (2023). Doi: https://doi.org/10.1016/j.jtice.2023.105028
69. M. Rojas-Motta, J.E. Rojas-Motta, J.L. Diaz-Jimenez, F.A. Bahos-Narváez, J.H. Blanco-Márquez, C.P. Ortiz, D.R. Delgado, M. Rojas-Motta, J.E. Rojas-Motta, J.L. Diaz-Jimenez, F.A. Bahos-Narváez, J.H. Blanco-Márquez, C.P. Ortiz & D.R. Delgado. Thermodynamic analysis and preferential solvation of gatifloxacin in DMF + methanol cosolvent mixtures. Rev. Colomb. Cienc. Quím. Farm., 49(3), 675–698 (2020). Doi: https://doi.org/10.15446/rcciquifa.v49n3.91337
70. D.A. Rivas-Ozuna, C.P. Ortiz, D.R. Delgado & F. Martínez. Solubility and preferential solvation of pyrazinamide in some aqueous-cosolvent mixtures at 298.15 K. Int. J. Thermophys., 45, 39 (2024). Doi: https://doi.org/10.1007/S10765-023-03318-8
71. A.M. Cruz-González, M.S. Vargas-Santana, S.d.J. Polania-Orozco, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, A. Jouyban & W.E. Acree. Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures. J. Mol. Liq., 325, 115222 (2021). Doi: https://doi.org/10.1016/j.molliq.2020.115222
72. D.I. Caviedes-Rubio, C.P. Ortiz, F. Martinez & D.R. Delgado. Thermodynamic assessment of triclocarban dissolution process in N-methyl-2-pyrrolidone + water cosolvent mixtures. Molecules, 28(20), 7216 (2023). Doi: https://doi.org/10.3390/molecules28207216
73. C.P. Ortiz, D.I. Caviedes-Rubio, F. Martinez & D.R. Delgado. Solubility of sulfamerazine in ace-tonitrile + ethanol cosolvent mixtures: Thermodynamics and modeling. Molecules, 29(22), 5294 (2024). Doi: https://doi.org/10.3390/molecules29225294
74. R. Gani. Group contribution-based property estimation methods: advances and perspectives. Curr. Opin. Chem. Eng., 23, 184–196 (2019). Doi: https://doi.org/10.1016/j.coche.2019.04.007
75. Y. Sun & N.V. Sahinidis. A new functional group selection method for group contribution models and its application in the design of electronics cooling fluids. Ind. Eng. Chem. Res., 60(19), 7291–7300 (2021). Doi: https://doi.org/10.1021/acs.iecr.1c00796
76. R. Al, J. Frutiger, A. Zubov & G. Sin. Prediction of environmental properties using a hybrid group contribution approach. Comp. Aid. Chem. Eng., 44, 1723–1728 (2018). Doi: https://doi.org/10.1016/B978-0-444-64241-7.50282-2
77. S. Cignitti, L. Zhang & R. Gani. Computer-aided framework for design of pure, mixed and blended products. Comp. Aid. Chem. Eng., 37, 2093–2098 (2015). Doi: https://doi.org/10.1016/B978-0-444-63576-1.50043-1
78. G.A.d.M. Areiza-Aldana, A. Cuellar-Lozano, N.A. Peña-Carmona, D.I. Caviedes-Rubio, A. Mehrdad, A.H. Miri, G.A. Rodríguez-Rodríguez & D.R. Delgado. Solution thermodynamics and preferential solvation of 3-chloro-N-phenyl-phthalimide in acetone + methanol mixtures. Rev. Co-lomb. Cienc. Quím. Farm., 45(2), (2016) 256–274 (2016). Doi: https://doi.org/10.15446/rcciq-uifa.v45n2.59941
79. J.J. Sandoval-Castro, C.P. Ortiz, J.D. Rodríguez-Rubiano, G.A. Rodríguez-Rodríguez & D.R. Del-gado. Preferential solvation of tricin in {ethanol (1) + water (2)} mixtures at several temperatures. Rev. Colomb. Cienc. Quím. Farm., 47(2) 135–148 (2018). https://doi.org/10.15446/rcciq-uifa.v47n2.73933
80. A. Aydi, C. Ayadi, K. Ghachem, A.Z. Al-Khazaal, D.R. Delgado, M. Alnaief & L. Kolsi. Solubility, solution thermodynamics, and preferential solvation of amygdalin in ethanol + water solvent mix-tures. Pharmaceuticals, 13(11), 395 (2020). Doi: https://doi.org/10.3390/ph13110395
81. J.J. Agredo-Collazos, C.P. Ortiz, N.E. Cerquera, R.E. Cardenas-Torres, D.R. Delgado, M.Á. Peña & F. Martínez. Equilibrium solubility of triclocarban in (cyclohexane + 1,4-dioxane) mixtures: Deter-mination, correlation, thermodynamics and preferential solvation. J. Solution Chem., 51, 1603–1625 (2022). Doi: https://doi.org/10.1007/S10953-022-01209-4
82. C.P. Ortíz, R.E. Cardenas-Torres, D.I. Caviedes-Rubio, S.D.J. Polania-Orozco & D.R. Delgado. Ther-modynamic analysis and preferential solvation of sulfanilamide in different cosolvent mixtures. Phys. Chem. Liq., 60(1), 9–24 (2022). Doi: https://doi.org/10.1080/00319104.2021.1888382
83. D.P. Pacheco & F. Martínez. Thermodynamic analysis of the solubility of naproxen in ethanol + water cosolvent mixtures. Phys. Chem. Liq., 45(5) 581–595 (2007). Doi: https://doi.org/10.1080/00319100701313862
84. F. Martínez, M.Á. Peña & P. Bustamante. Thermodynamic analysis and enthalpy-entropy compen-sation for the solubility of indomethacin in aqueous and non-aqueous mixtures. Fluid Phase Equilib., 308(1-2), 98–106 (2011). Doi: https://doi.org/10.1016/j.fluid.2011.06.016
85. H. Rezaei, E. Rahimpour, F. Martinez & A. Jouyban. Solubility determination and thermodynamic modeling of deferiprone in the binary aqueous mixtures of 2-propanol from 293.15 to 313.15 K. Iranian J. Pharm. Sci., 19(4) 279–292 (2023). Doi: https://doi.org/10.22037/ijps.v19i4.43600
86. M. Barzegar-Jalali, A. Sheikhi-Sovari, F. Martinez, B. Seyfinejad, E. Rahimpour & A. Jouyban. Sol-ubility determination, mathematical modeling, and thermodynamic analysis of naproxen in binary solvent mixtures of (1-propanol/2-propanol) and ethylene glycol at different temperatures. BMC Chem., 18, 178 (2024). Doi: https://doi.org/10.1186/S13065-024-01291-3
87. E. Mohammadian, M. Dashti, F. Martinez & A. Jouyban. Experimental measurement, thermody-namic analysis, and mathematical modeling for budesonide solubility in 1-propanol + water mix-tures at T = (293.2 to 313.2) K. BMC Chem., 18, 190 (2024). Doi: https://doi.org/10.1186/S13065-024-01297-X
88. D. Baracaldo-Santamaría, C.A. Calderon-Ospina, C.P. Ortiz, R.E. Cardenas-Torres, F. Martinez & D.R. Delgado. Thermodynamic analysis of the solubility of isoniazid in (PEG 200 + water) cosolvent mixtures from 278.15 K to 318.15 K. Int. J. Mol. Sci., 23(17), 10190 (2022). Doi: https://doi.org/10.3390/ijms231710190
89. F. Martínez, M.Á. Peña & A. Jouyban. Dissolution thermodynamics and preferential solvation of phenothiazine in some aqueous cosolvent systems. Liquids, 4(2), 443–455 (2024). Doi: https://doi.org/10.3390/liquids4020024
90. P. Bustamante, A. Martin & M.A. Gonzalez‐Guisandez. Partial solubility parameters and solvato-chromic parameters for predicting the solubility of single and multiple drugs in individual sol-vents. J. Pharm. Sci., 82(6), 635–640 (1993). Doi: https://doi.org/10.1002/jps.2600820618
91. P. Bustamante, J. Navarro, S. Romero & B. Escalera. Thermodynamic origin of the solubility profile of drugs showing one or two maxima against the polarity of aqueous and nonaqueous mixtures: Niflumic acid and caffeine. J. Pharm. Sci., 91(3), 874–883 (2002). Doi: https://doi.org/10.1002/jps.10076
92. P. Bustamante & E. Sellés. Relationship between the solubility parameter and the binding of drugs by plasma proteins. J. Pharm. Sci., 75(7), 639–643 (1986). Doi: https://doi.org/10.1002/jps.2600750704
93. D.R. Delgado. Solubility data of some sulfonamides in different cosolvent mixtures. Mendeley Data, Medellin, 2024. Doi: https://doi.org/10.17632/2vxv7hzsrm
94. D.R. Delgado & R.E. Cardenas-Torres. AI-Solubility algorithm. Mendeley Data, Medellin, 2024. Doi: https://doi.org/10.17632/yg58dn8b9c
95. R.G. Sotomayor, A.R. Holguín, D.M. Cristancho, D.R. Delgado & F. Martínez. Extended Hilde-brand Solubility Approach applied to piroxicam in ethanol + water mixtures. J. Mol. Liq., 180, (2013) 34–38 (2013). Doi: https://doi.org/10.1016/j.molliq.2012.12.028
96. J.L. Gómez, G.A. Rodríguez, D.M. Cristancho, D.R. Delgado, C.P. Mora, A. Yurquina & F. Martínez. Extended Hildebrand Solubility Approach applied to nimodipine in PEG 400 + ethanol mixtures. Rev. Colomb. Cienc. Quím. Farm., 42(1), 103–121 (2013). URL: http://sci-elo.org.co/pdf/rccqf/v42n1/v42n1a07.pdf
97. A.R. Holguín, D.R. Delgado & F. Martínez. Indomethacin solubility in propylene glycol + water mixtures according to the Extended Hildebrand solubility approach. Lat. Am. J. Pharm., 31(5), 720–726 (2012). URL: https://www.latamjpharm.org/resumenes/31/5/LAJOP_31_5_1_12.pdf
98. Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, M. Peña & F. Martínez. Extended Hildebrand solubility approach applied to some sulphonamides in propylene glycol + water mixtures. Phys. Chem. Liq., 53(6), 763–775 (2015). Doi: https://doi.org/10.1080/00319104.2015.1048247
99. A. Aydi, I. Dali, K. Ghachem, A.Z. Al-Khazaal, D.R. Delgado & L. Kolsi. Solubility of Hydroxyty-rosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation. Alexandria Eng. J., 60(1), 905–914 (2021). Doi: https://doi.org/10.1016/j.aej.2020.10.019
100. Y.L. Cuellar-Carmona, N.E. Cerquera, R.E. Cardenas-Torres, C.P. Ortiz, F. Martínez & D.R. Del-gado. Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models. Braz. J. Chem. Eng. (2024). Doi: https://doi.org/10.1007/S43153-024-00489-1
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13