Publicado
Como ser un cazador de impurezas en las sustancias activas: una metodología y casos de estudio
How to be an impurity hunter in the pharmaceutical ingredients: a methodology and study cases
Como ser um caçador de impurezas em substâncias ativas: uma metodologia e estudos de caso
DOI:
https://doi.org/10.15446/rcciquifa.v54n1.119554Palabras clave:
Impurezas, elucidación, sustancias activas, formas farmacéuticas, investigación, control (es)Impurities, elucidation, pharmaceutical ingredients, pharmaceutical dosage forms, investigation, control (en)
Impurezas, elucidação, substâncias ativas, formas farmacêuticas, pesquisa, controle (pt)
Descargas
Introducción. El contenido de impurezas en las sustancias activas y formas farmacéuticas es un tópico de suma importancia ya que un alto contenido de subproductos podría poner en riesgo a la población. En función del conocimiento de la estructura se tienen diferentes límites. Por lo tanto, es mandatorio conocer el origen y las estructuras químicas de las impurezas con objeto de poder limitarlas. En lo que respecta a los procesos de fabricación, siempre hay una pequeña posibilidad de que algún proceso tenga una excursión en alguna variable ya sea por error humano o por falla en algún equipo. Intención. Por lo tanto, es necesario saber cómo gestionar este tipo de problemáticas y lo más importante evitar reincidencias. Para lograr este objetivo es necesario desarrollar una metodología que brinde una pauta seguir. El conocimiento de la estructura, así como una investigación de carácter científico ayudara a proponer las medidas correctivas operativas adecuadas para evitar la recurrencia y poder continuar la fabricación de producto que cumpla con las normativas y especificaciones vigentes. La implementación de acciones que deriven en el rápido control de las problemáticas es de capital importancia para la industria farmacéutica con el objetivo tener medidas alternativas de control y seguir fabricando ya que los pacientes esperan esas medicinas. Resultados. En esta revisión se presenta una metodología para elucidar impurezas orgánicas ya sea en las sustancias activas o en las formas farmacéuticas. Se presentarán diez casos teóricos y se ejemplificara con casos similares descritos en la literatura. También se comentarán las principales herramientas utilizadas para realizar investigaciones. Así mismo, se brindará una perspectiva de los avances analíticos utilizados para elucidar impurezas. Finalmente, se comentarán algunas propuestas de control.
Introduction. The content of impurities in active substances and pharmaceutical forms is a very im-portant topic since a high content of byproducts could put the population at risk. Depending on the knowledge of the structure, there are different limits. Therefore, it is mandatory to know the origin and chemical structures of the impurities in order to limit them. When it comes to manufacturing processes, there is always a small possibility that a process may have an excursion in some variable either due to human error or equipment failure. Intention. Therefore, it is necessary to know how to manage this type of problem and, most importantly, avoid recurrence. To achieve this objective, it is necessary to develop a methodology that provides a guideline to follow. Knowledge of the structure, as well as scientific research, will help propose appropriate operational corrective measures to avoid recurrence and be able to continue manufacturing a product that complies with current regulations and specifications. The implementation of actions that lead to the rapid control of problems is of capital importance for the pharmaceutical industry with the objective of having alternative control measures and continuing to manufacture since patients expect these medicines. Results. In this review, a methodology is presented to elucidate organic impurities either in active substances or in pharmaceutical forms. Ten theoretical cases will be presented and exemplified with similar cases described in the literature. The main tools used to carry out research will also be discussed. Likewise, a perspective of the analytical advances used to elucidate impurities will be provided. Finally, some control proposals will be commented.
Introdução. O teor de impurezas em substâncias ativas e formas farmacêuticas é um tema de extrema importância, uma vez que um elevado teor de subprodutos pode colocar a população em risco. Dependendo do conhecimento da estrutura, existem diferentes limites. Portanto, é obrigatório conhecer a origem e as estruturas químicas das impurezas para limitá-las. Quando se trata de processos de fabricação, sempre existe uma pequena possibilidade de que um processo possa sofrer uma excursão em alguma variável, seja por erro humano ou falha de equipamento. Intenção. Por isso, é preciso saber administrar esse tipo de problema e, o mais importante, evitar a recorrência. Para atingir este objetivo é necessário desenvolver uma metodologia que forneça uma diretriz a seguir. Os conhecimentos da estrutura, bem como a investigação científica, ajudarão a propor medidas corretivas operacionais adequadas para evitar recorrências e poder continuar a fabricar um produto que cumpra as normas e especificações vigentes. A implementação de ações que levem ao rápido controle dos problemas é de capital importância para a indústria farmacêutica com o objetivo de ter medidas alternativas de controle e continuar a fabricar uma vez que os pacientes esperam estes medicamentos. Resultados. Nesta revisão é apresentada uma metodologia para elucidar impurezas orgânicas tanto em substâncias ativas quanto em formas farmacêuticas. Serão apresentados dez casos teóricos e exemplificados com casos semelhantes descritos na literatura. Também serão discutidas as principais ferramentas utilizadas para a realização de pesquisas. Da mesma forma, será fornecida uma perspectiva dos avanços analíticos utilizados para elucidar as impurezas. Por fim, serão comentadas algumas propostas de controle.
Referencias
1. ICH Harmonised Tripartite Guideline. Impurities in new Drug products Q3B(R2). The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use, Switzer-land, 2006; 16 p. URL: https://database.ich.org/sites/default/files/Q3B%28R2%29%20Guide-line.pdf. Consultado: 08 Jul 2024.
2. Food Drug and Administration. FDA anounces voluntary recall of several medicines containing valsartan following detection of an impurity. Silver Spring (MD), 2018. URL: https://www.fda.gov/news-events/press-announcements/fda-announces-voluntary-recall-several-medicines-containing-valsartan-following-detection-impurity. Consultado: 08 Jul 2024.
3. A. Pozniak, L. Muller, M. Salgo, J.K. Jones, P. Larson & D. Tweats. Elevated ethyl methanesulfonate (EMS) in nelfinavir mesylate (Viracept, Roche): overview. AIDS Res. Ther., 6, 18 (2009). Doi: https://doi.org/10.1186/1742-6405-6-18
4. S.R. Chemburkar, J. Bauer, K. Deming, H. Spiwek, K. Patel, J. Morris, et al. Dealing with the impact of Ritonavir Polymorphs on the late stages of bulk drug process development. Org. Process Res. Dev., 4(5), 413–417 (2004). Doi: https://doi.org/10.1021/op000023y
5. W. Rehman, L.M. Arfons & H.M. Lazarus. The rise, fall and subsequent triumph of Thalidomide: lessons learned in drug development. Ther. Adv. Hematol., 2(5), 291–308 (2011). Doi: https://doi.org/10.1177/2040620711413165
6. Cofepris. Norma oficial Mexicana NOM-164-SSA1-2015, Buenas Prácticas de fabricación de fármacos. Ciudad de México, 2016. URL: https://www.dof.gob.mx/nota_detalle.php?codigo=5424377&fe-cha=04/02/2016#gsc.tab=0. Consultado: 08 Jul 2024.
7. ICH Harmonised Tripartite Guideline. Good manufacturing practice guide for active pharmaceutical in-gredients Q7. The international Council for Harmonisation of Technical requirements for Pharma-ceutical for Human use, Switzerland, 2000; 49 p. URL: http:// https://database.ich.org/sites/de-fault/files/Q7%20Guideline.pdf. Consultado 08 Jul 2024.
8. ICH Harmonised Tripartite Guideline. Impurities in new drug substances Q3A(R2). The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use, Switzer-land, 2006; 15 p. URL: http:// https://database.ich.org/sites/default/files/Q3A_R2__Guideline.pdf. Consultado 08 Jul 2024.
9. ICH Harmonised Tripartite Guideline. Guideline for residual solvents Q3C(R9). The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use, Switzer-land, 2016; 50 p. URL: https://database.ich.org/sites/default/files/ICH_Q3C%28R9%29_Guide-line_MinorRevision_2024_2024_Approved.pdf. Consultado 08 Jul 2024.
10. ICH Harmonised Tripartite Guideline. Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk M7 (R2). The international Council for Harmoni-sation of Technical requirements for Pharmaceutical for Human use; Switzerland, 2017; 32 p. URL: https://database.ich.org/sites/default/files/ICH_M7%28R2%29_Guideline_Step4_2023_0216_0.pdf . Consultado 08 Jul 2024
11. L. Muller, R.J. Mauthe, C.M. Riley, M.M. Andino, D. De Antonis, C. Beels, et al. A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul. Toxicol. Pharmacol., 44(3), 198–211 (2006). Doi: https://doi.org/10.1016/j.yrtph.2005.12.001
12. ICH Harmonised Tripartite Guideline. Guideline for Elemental Impurities Q3D(R2). The international Council for Harmonisation of Technical requirements for Pharmaceutical for Human use, Switzer-land, 2022; 88 p. URL: https://database.ich.org/sites/default/files/Q3D-R2_Guide-line_Step4_2022_0308.pdf. Consultado 08 Jul 2024.
13. J.C. Ortiz-Lara, M.Y. Salvitano-Domínguez, E. Méndez-Campos & P.V. Robles-Salgado. Impurezas elementales en las sustancias activas: Una perspectiva general. Rev. Colomb. Cienc. Quim. Farm., 52(1), 11–58 (2023). URL: https://revistas.unal.edu.co/index.php/rccquifa/arti-cle/view/102095/88978
14. Cofepris. Norma oficial Mexicana NOM-059-SSA1-2015, Buenas Prácticas de fabricación de medicamen-tos. Ciudad de México, 2015. URL: https://dof.gob.mx/nota_detalle.php?codigo=5424575&fe-cha=05/02/2016#gsc.tab=0. Consultado 08 Jul 2024.
15. J.C. Ortiz-Lara, S. Flores-Teloxa, I.R. Contreras-Mora & A. Díaz, Impurezas orgánicas observadas en el proceso de manufactura de las Sustancias. Rev. Mex. Cienc. Farm., 47(1), 7–24 (2016). URL: https://www.redalyc.org/pdf/579/57956609002.pdf
16. C. Pan, F. Liu & M. Motto. Identification of pharmaceutical impurities in formulated dosage forms. J. Pharm. Sci., 100(4), 1228-1259 (2011). Doi: https://doi.org/10.1002/jps.22376
17. N.V.V.S.S. Raman, A.V.S.S. Prasad & R. Reddy. Strategies for the identification, control and deter-mination of genotoxic impurities in drug substances: A pharmaceutical industrial perspective. J. Pharm. Biomed. Anal., 55(4), 662–667 (2011). Doi: https://doi.org/10.1016/j.jpba.2010.11.039
18. D. Kushwah, H.B. Patel, P.K. Sinha & P.K. Jana. Practical approach for the determination of re-sponse factors of impurities in drugs by HPLC. E-J. Chem., 8(4), 1504–1511 (2011). URL: https://on-linelibrary.wiley.com/doi/epdf/10.1155/2011/462364
19. R. Brito da Silva & C. Aparecida de Mattos. Critical success factors of a drug traceability system for creating value in a pharmaceutical supply chain (PSC). Int. J. Environ. Res. Public Health, 16(11), 1972 (2019). Doi: https://doi.org/10.3390/ijerph16111972
20. S. Gorog. Critical review of reports on impurity and degradation profiling in the last decade. TrAC Trends Anal. Chem., 101, 2–16 (2018). Doi: https://doi.org/10.1016/j.trac.2017.09.012
21. S.L. Prabu & T.N.K. Suriyaprakash. Impurities and its importance in pharmacy. Int. J. Pharm. Sci. Rev. Res., 3(2), 66–71 (2010). URL: https://www.researchgate.net/publication/266864231_Impuri-ties_and_its_importance_in_pharmacy
22. N. Rahman, S.N.H. Azmi & H.F. Wu. The importance of impurity analysis in pharmaceutical prod-ucts: an integrated approach. Acred. Qual. Assur., 11, 69–74 (2006). Doi: https://doi.org/10.1007/s00769-006-0095-y
23. S.R. Shah, M.A. Patel, M.V. Naik, P.K. Pradhan & U.M. Upadhyay. Recent approaches of “impurity profiling” in pharmaceutical analysis: a review. Int. J. Pharm. Sci. Res., 3(10), 3603–3617 (2012). Doi: http://dx.doi.org/10.13040/ijpsr.0975-8232.3(10).3603-17
24. C.J. Mbah. Hyphenated analytical methods: Role in pharmaceutical analysis. Acta Sci. Pharm. Sci., 2(9), 67–68 (2018). URL: https://actascientific.com/ASPS/pdf/ASPS-02-0123.pdf
25. S. Zasa, S.M. Lucini, F. Sciascia, V. Ferrone, R. Cifelli, G. Carlucci & M. Locatelli. Recent advances in the separation and determination of impurities in pharmaceutical products. Instrum. Sci. Tech-nol., 43(2), 182–196 (2015). Doi: https://doi.org/10.1080/10739149.2014.921792
26. K.R. Dhangar, R.B. Jagtap, S.J. Surana & A.A. Shirkhedkar. Impurity profiling of drugs towards safety and efficacy: theory and practice. J. Chil. Chem. Soc., 62(2), 3543–3557 (2017). URL: https://www.scielo.cl/pdf/jcchems/v62n2/art24.pdf
27. M.N. Raju, N. Kolla, K. Mukkanti & R. Bandichhor. An efficient and large-scale synthesis of Olmesartan Medoxomil: Anti hypertensive drug. Chem. Biol. Inter., 3(1), 26–37 (2013). URL: https://www.cbijournal.com/paper-archive/jan-feb-2013-vol-1/Research-Paper-4.pdf
28. S.B. Madasu, N.A. Vekariya, N.M. Hari-Kiran, B. Gupta, A. Islam, P.S. Douglas & K.R. Babu. Syn-thesis of compounds related to the antimigraine drug eliptriptan hydrobromide. Beilstein J. Org. Chem., 8, 1400-1405 (2012). Doi: https://doi.org/10.3762/bjoc.8.162
29. E. Tieger, V. Kiss, G. Pokol, Z. Finta, M. Dusek, J. Rohlicek, E. Skorepova & P. Brazda. Studies on the crystal structure and arrangement of water in sitagliptine L- Tartrate hydrates. Crys. Eng. Comm., 18, 3819–3831 (2016). Doi: https://doi.org/10.1039/C6CE00322B
30. J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter & J. Morris. Ritonavir: An extraordi-nary example of conformational polymorphism. Pharm. Res., 18(6), 859–866 (2001). Doi: https://doi.org/10.1023/A:1011052932607
31. B.P. Chekal, J. Ewers, S.M. Guiness, N.D. Ide, K.R. Leeman, R.J. Post, et al. Palbociclib commercial manufacturing process development. Part III. Deprotection following by crystallization for API particle control. Org. Process Res. Dev., 20(7), 1217-1226 (2016). Doi: https://doi.org/10.1021/acs.oprd.6b00071
32. S.A. Schildcrout, D.S. Risley & R.L. Kleemann. Drug-excipient interactions of Seproxetine Maleate hemihydrate: Isothermal stress methods. Drug Dev. Ind. Pharm., 19(10), 1113–1130 (1993). Doi: https://doi.org/10.3109/03639049309063006
33. J. Roy, M. Islam, A.H. Khan, S.C. Das, M. Akhteruzzaman, A.K. Deb & A.H.M. Alam. Diclofenac Sodium injection sterilized by autoclave and the occurrence of cyclic reaction producing a small amount of impurity. J. Pharm. Sci., 90(5), 541–544 (2001). Doi: https://doi.org/10.1002/1520-6017(200105)90:5<541::aid-jps1011>3.0.co;2-o
34. C.M. Rojas. The Mislow–Evans rearrangement. En: C.M. Rojas (editor). Molecular Rearrangements in Organic Chemistry. Wiley & sons. Inc., 2015; pp. 569–626.
35. H. Ren, C.A. Strulson, G. Humprey, R. Xiang, G. Li, D.R. Gauthier & K. Maloney. Potassium iso-propyl xanthate (IX): an ultra – efficient palladium scavenger. Green Chem., 19, 4002–4006 (2017). Doi: https://doi.org/10.1039/C7GC01765K
36. C.E. Garret & K. Prasad. The art of meeting palladium specifications in active pharmaceutical in-gredients produced by Pd-catalyzed reactions. Adv. Synth. Catal., 346, 889–900 (2004). Doi: https://doi.org/10.1002/adsc.200404071
37. P. Thatipalli, R. Kumar, C. Bulusu, R. Chakka, P.R. Padi, A. Yerra & S.A. Bollikonda. Synthesis and characterization of an anti-psychotic drug substance, Olanzapine. ARKIVOC, 195-201 (2008). URL: https://www.arkat-usa.org/get-file/23361/
38. M.M.A. El Azziz, A.G. Melad & A.S. Ashour. Grindstone neutralization reaction for the prepara-tion of various salts of carboxylic acids. MOJ Bioorg. Org. Chem., 3(2), 31-36 (2019). URL: https://medcraveonline.com/MOJBOC/MOJBOC-03-00095.pdf
39. T.T. Kararli, T.E. Needham, C.J. Seul & P.M. Finnegan. Solid state interaction of Magnesium Oxide and Ibuprofen to form a salt. Pharm. Res., 6(9), 804–808 (1989). Doi: https://doi.org/10.1023/A:1015983732667
40. R.A. Seburg, J.M. Ballard, T.L. Hwang & C.M. Sullivan. Photosensitized degradation of losartan potassium in an extemporaneous suspension formulation. J. Pharm. Biomed. Anal., 42(2), 411–422 (2006). Doi: https://doi.org/10.1016/j.jpba.2006.04.030
41. B.P. Kumar, R.K. Sahu, K.V.R. Murthy, S. Rao & B. Ramu. A review on mechanism, importance and methods of compatibility testing in formulation of dosage forms. J. Chem. Pharm. Sci., 4(4), 141–151 (2011).
42. K.R. Wadekar, M. Bhalme, S.S. Rao, K.V. Reddy & E. Balasubrahmanyam. Evaluating impurities in drugs (Part I of III). Pharm. Technol., 36(2), 46–51 (2012). URL: https://www.pharmtech.com/view/evaluating-impurities-drugs-part-i-iii
43. K.R. Wadekar, P. Ravi, M. Bhalme, S.S. Rao, K.V. Reddy & E. Balasubrahmanyam. Evaluating im-purities in drugs (Part II of III). Pharm. Technol., 36(3), 58–72 (2012). URL: https://www.pharmtech.com/view/evaluating-impurities-drugs-part-ii-iii
44. K.R. Wadekar, P. Ravi, M. Bhalme, S.S. Rao, K.V. Reddy, L.S. Kumar & E. Balasubrahmanyam. Evaluating impurities in drugs (Part III of III). Pharm. Technol., 36(4), 76–86 (2012). URL: https://www.pharmtech.com/view/evaluating-impurities-drugs-part-iii-iii
45. M. Li. Organic Chemistry of drug degradation. RSC Drug Discovery Series, No. 29. RSC Publishing, London, 2012.
46. L. Stevens & B. Dense. The guide to CAPA and root cause analysis in FDA-Regulated industries. The FDA Group, LLC. 34 p. URL: http://cdn2.hubspot.net/hubfs/1706982/White_Pa-pers/The%20Guide%20to%20CAPA%20and%20Root%20Cause%20Analysis%20in%20FDA-Reg-ulated%20Industries.pdf
47. M.L George, D. Rowlands, M. Price & J. Maxey. Lean Six Sigma Pocket Toolbook: A Quick Reference Guide to 100 Tools for Improving Quality and Speed. McGraw-Hill, New York (NY), 2005; chapter 9, pp. 141–149.
48. J.C. Ortiz-Lara & A. Balderrábano-López. Importancia de las sales orgánicas en la industria farma-céutica. Rev. Mex. Cienc. Farm., 48(1), 18–42 (2017). URL: https://rmcf.afmac.mx/importancia-de-las-sales-organicas-en-la-industria-farmaceutica/
49. N. Fathima, T. Mamatha, H.K. Qureshi, N. Anitha & J.V. Rao. Drug excipient interaction and its importance in dosage form development. J. Appl. Pharm. Sci., 01(06), 66–71 (2011). URL: https://jap-sonline.com/admin/php/uploads/125_pdf.pdf
50. J.C. Ortiz-Lara. Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review. Rev. Colomb. Cienc. Quim. Farm., 53(1), 184–218 (2024). URL: https://revistas.unal.edu.co/in-dex.php/rccquifa/article/view/112981/91541
51. K.-T. Liu & C.-H. Chen. Determination of impurities in Pharmaceuticals: Why and how? En: P. Pereira & S. Xavier (editores). Quality Management and Quality Control - New Trends and Develop-ments. IntechOpen, London, 2019. Doi: https://doi.org/10.5772/intechopen.83849
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13