Publicado

2025-04-08

Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches

Efecto antiviral de las antocianinas en verduras y frutas contra enfermedades virales: información sobre el diseño de medicamentos mediante enfoques de química computacional

Efeito antiviral de antocianinas em vegetais e frutas contra doenças virais: uma visão do projeto de medicamentos por meio de abordagens de química computacional

DOI:

https://doi.org/10.15446/rcciquifa.v54n1.119556

Palabras clave:

COVID-19, anthocyanins, ion chelation, DFT (en)
COVID-19, antocianinas, quelación iónica, DFT (es)
COVID-19, antocianinas, quelação iônica, DFT (pt)

Descargas

Autores/as

  • Fatemeh Mollaamin Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
  • Majid Monajjemi Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Introduction: The probe for ideal medications with absolute antiviral activity against SARS-CoV-2 is still in place, and attention has been recently drawn to medicinal plants. Aims: To evaluate the several molecular targets as points of therapeutic intervention. Methods: Clusters of metal ions of Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+ joined to anthocyanins in water media were studied for unraveling the color shifting of different complexes of these structures in the low ranges of pH using DFT/B3LYP/6–31G (d,p) method. Results: It has been studied the metal cations diffusing of deprotonating for the anthocyanin (B)-ring of Mal, Peo, Del, Pet, Cya in water and applying the IR method for getting the physico-chemical specifications of intensity, frequency, and absorbance of the compounds, respectively. It has been seen that by increasing the pH, the frequency of Al3+Cya, Ga3+Cya, Mg2+Cya complexes increase between pH ≈1.1-1.5. The change in Gibbs free energy change (ΔG) may be the best indicator of the protection offered by dietary stabilizers on anthocyanins, which demonstrated the best stabilizer among dietary compounds as Del with ΔG = −2.92×10-5 kcal/mol. Furthermore, the partial charges and spin density have been gained by matching the electrostatic potential to atomic charge of O+17, O+16 , and O+7 ions for Mn+(31)Cya, Mn+(32)Del and Mn+(35)Pet, respectively. Conclusions: The anthocyanins discussed in this article indicate robust binding affinities and strong inhibitory molecular interactions with the target proteins and could be well exploited as potential medication candidates with potent multiple antiviral impacts against COVID-19 virus. 

Introducción: La investigación de medicamentos ideales con actividad antiviral absoluta contra el SARS-CoV-2 aún está en marcha, y recientemente se ha llamado la atención sobre las plantas medicinales. Objetivos: Evaluar los diversos objetivos moleculares como puntos de intervención terapéutica. Métodos: Se estudiaron grupos de iones metálicos de Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+ unidos a antocianinas en medios acuosos para desentrañar el cambio de color de diferentes complejos de estas estructuras en los rangos bajos de pH utilizando el método DFT/B3LYP/6–31G (d,p). Resultados: Se ha estudiado la difusión de cationes metálicos de desprotonación para el anillo de antocianina (B) de Mal, Peo, Del, Pet, Cya en agua y se ha aplicado el método IR para obtener las especificaciones fisicoquímicas de intensidad, frecuencia y absorbancia de los compuestos, respectivamente. Se ha visto que al aumentar el pH, la frecuencia de los complejos Al3+Cya, Ga3+Cya, Mg2+Cya aumenta entre pH ≈1,1-1,5. El cambio en el cambio de energía libre de Gibbs (ΔG) puede ser el mejor indicador de la protección ofrecida por los estabilizadores dietéticos sobre las antocianinas, que demostraron ser el mejor estabilizador entre los compuestos dietéticos como Del con ΔG = −2.92×10-5 kcal/mol. Además, las cargas parciales y la densidad de espín se han obtenido al hacer coincidir el potencial electrostático con la carga atómica de los iones O+17, O+16 y O+7 para Mn+(31)Cya, Mn+(32)Del y Mn+(35)Pet, respectivamente. Conclusiones: Las antocianinas analizadas en este artículo indican afinidades de unión robustas y fuertes interacciones moleculares inhibitorias con las proteínas objetivo y podrían ser bien explotadas como posibles candidatos a medicamentos con potentes impactos antivirales múltiples contra el virus COVID-19. 

Introdução: A sonda para medicamentos ideais com atividade antiviral absoluta contra SARS-CoV-2 ainda está em andamento, e a atenção foi recentemente atraída para plantas medicinais. Objetivos: Avaliar os vários alvos moleculares como pontos de intervenção terapêutica. Métodos: Clusters de íons metálicos de Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+ unidos a antocianinas em meio aquoso foram estudados para desvendar a mudança de cor de diferentes complexos dessas estruturas nas baixas faixas de pH usando o método DFT/B3LYP/6–31G (d,p). Resultados: Foi estudada a difusão de cátions metálicos de desprotonação para o anel de antocianina (B) de Mal, Peo, Del, Pet, Cya em água e aplicando o método IR para obter as especificações físico-químicas de intensidade, frequência e absorbância dos compostos, respectivamente. Foi observado que ao aumentar o pH, a frequência dos complexos Al3+Cya, Ga3+Cya, Mg2+Cya aumenta entre pH ≈1,1-1,5. A mudança na mudança de energia livre de Gibbs (ΔG) pode ser o melhor indicador da proteção oferecida pelos estabilizadores dietéticos em antocianinas, que demonstraram o melhor estabilizador entre os compostos dietéticos como Del com ΔG = −2.92×10-5 kcal/mol. Além disso, as cargas parciais e a densidade de spin foram obtidas ao combinar o potencial eletrostático com a carga atômica dos íons O+17, O+16 e O+7 para Mn+(31)Cya, Mn+(32)Del e Mn+(35)Pet, respectivamente. Conclusões: As antocianinas discutidas neste artigo indicam afinidades de ligação robustas e fortes interações moleculares inibitórias com as proteínas alvo e podem ser bem exploradas como potenciais candidatos a medicamentos com múltiplos impactos antivirais potentes contra o vírus COVID-19. 

Referencias

1. L. Alomair, S. Mustafa, M.S. Jafri, W. Alharbi, A. Aljouie, F. Almsned M. Alawad, Y.A. Bokhari & M. Rashid. Molecular dynamics simulations to decipher the role of phosphorylation of SARS-CoV-2 nonstructural proteins (nsps) in viral replication. Viruses, 14(11), 2436 (2022). Doi: https://doi.org/10.3390/v14112436

2. M.A.A. Zadeh, H. Lari, L. Kharghanian, E. Balali, R. Khadivi, H. Yahyaei, F. Mollaamin & M. Monajjemi. Density functional theory study and anti-cancer properties of Shyshaq plant: In view point of nano biotechnology. J. Comput. Theoret. Nanosci., 12(11), 4358-4367 (2015). Doi: https://doi.org/10.1166/jctn.2015.4366

3. M. Monajjemi, S. Afsharnezhad, M.R. Jaafari, S. Mirdamadi, F. Mollaamin & H. Monajemi. Inves-tigation of energy and NMR isotropic shift on the internal rotation Barrier of Θ4 dihedral angle of the DLPC: A GIAO study. Chemistry, 17(1), 55–69 (2008).

4. M. Monajjemi, F. Mollaamin & S. Shojaei. An overview on coronaviruses family from past to COVID-19: Introduce some inhibitors as antiviruses from Gillan’s plants. Biointerface Res. Appl. Chem., 10(3), 5575–5585 (2020). Doi: https://doi.org/10.33263/briac103.575585

5. S. Shahriari, M. Monajjemi & F. Mollaamin. Determination of proteins specification with SARS-Covid-19 based ligand designing. J. Chil. Chem. Soc., 67(2), 5468–5476 (2022). Doi: https://doi.org/10.4067/s0717-97072022000205468

6. A. Majeed & X. Zhang. On the adoption of modern technologies to fight the COVID-19 pandemic: A technical synthesis of latest developments. COVID, 3(1), 90–123 (2023). Doi: https://doi.org/10.3390/covid3010006

7. F. Mollaamin. Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos. Rev. Colomb. Quím., 52(2), 28–35 (2024). Doi: https://doi.org/10.15446/rev.colomb.quim.v52n2.111888

8. F. Mollaamin. Characterizing the structural and physicochemical properties of medicinal plants as a proposal for treating of viral malady. Trends Immunother., 7(2), 2329 (2023). Doi: https://doi.org/10.24294/ti.v7.i2.2329

9. F. Mollaamin & M. Monajjemi. Thermodynamic research on the inhibitors of coronavirus through drug delivery method. J. Chil. Chem. Soc., 66(2), 5195–5205 (2021). Doi: https://doi.org/10.4067/s0717-97072021000205195

10. A. Tahan, F. Mollaamin & M. Monajjemi. Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russ. J. Phys. Chem. A, 83(4), 587–597 (2009). Doi: https://doi.org/10.1134/S003602440904013X

11. F. Mollaamin. Structural and functional characterization of medicinal plants as selective antibodies towards therapy of COVID-19 symptoms. Antibodies, 13(2), 38 (2024). Doi: https://doi.org/10.3390/antib13020038

12. F. Zeng, Y. Huang, Y. Guo, M. Yin, X. Chen, L. Xiao & G. Deng. Association of inflammatory mark-ers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis., 96, 467–474 (2020). Doi: https://doi.org/10.1016/j.ijid.2020.05.055

13. F. Mollaamin. Physicochemical investigation of anti-covid19 drugs using several medicinal plants. J. Chil. Chem. Soc., 67(2), 5537–5546 (2022). Doi: https://doi.org/10.4067/s0717-97072022000205537

14. Q.M.S. Jamal. Antiviral potential of plants against COVID-19 during outbreaks—An update. Int. J. Mol. Sci., 23(21), 13564 (2022). Doi: https://doi.org/10.3390/ijms232113564

15. J. Remali & W.M. Aizat. A review on plant bioactive compounds and their modes of action against coronavirus infection. Front. Pharmacol., 11, 589044 (2021). Doi: https://doi.org/10.3389/fphar.2020.589044

16. F. Mollaamin, S. Shahriari & M. Monajjemi. Monkeypox disease treatment by tecovirimat adsorbed onto single-walled carbon nanotube through drug delivery method. J. Chil. Chem. Soc., 68(1), 5796–5801 (2023). Doi: https://doi.org/10.4067/s0717-97072023000105796

17. T. Capell, R.M. Twyman, V. Armario-Najera, J.K.-C. Ma, S. Schillberg & P. Christou. Potential ap-plications of plant biotechnology against SARS-CoV-2. Trends Plant Sci., 25(7), 635–643 (2020). Doi: https://doi.org/10.1016/j.tplants.2020.04.009

18. F. Mollaamin & M. Monajjemi. B5N10 Nanocarrier functionalized with Al, C, Si atoms: A drug de-livery method for infectious disease remedy. OBM Genetics, 08(01), 214 (2024). Doi: https://doi.org/10.21926/obm.genet.2401214

19. S. Murugesan, C. Ragavendran, A. Ali, V. Arumugam, D.K. Lakshmanan, P. Palanichamy, et al. Screening and druggability analysis of marine active metabolites against SARS-CoV-2: An integra-tive computational approach. Int. J. Transl. Med., 3(1), 27–41 (2022). Doi: https://doi.org/10.3390/ijtm3010003

20. M.L. Castro-Acosta, G.N. Lenihan-Geels, C.P. Corpe & W.L. Hall. Berries and anthocyanins: prom-ising functional food ingredients with postprandial glycaemia-lowering effects. Proc. Nutr. Soc., 75(3), 342–355 (2016). Doi: https://doi.org/10.1017/s0029665116000240

21. O. Paredes-López, M.L. Cervantes-Ceja, M. Vigna-Pérez & T. Hernández-Pérez. Berries: Improving human health and healthy aging, and promoting quality life—A review. Plant Foods Hum. Nutr., 65(3), 299–308 (2010). Doi: https://doi.org/10.1007/s11130-010-0177-1

22. F. Mollaamin & M. Monajjemi. Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease. Rev. Colomb. Cienc. Quím. Farm., 53(2), 430–454 (2024). Doi: https://doi.org/10.15446/rcciq-uifa.v53n2.114450

23. P.H.M. Torres, A.C.R. Sodero, P. Jofily & F.P. Silva, Jr. Key topics in molecular docking for drug design. Int. J. Mol. Sci., 20(18), 4574 (2019). Doi: https://doi.org/10.3390/ijms20184574

24. S. Das, S. Sarmah, S. Lyndem & A.S. Roy. An investigation into the identification of potential in-hibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn., 39(9), 3347–3357 (2021). Doi: https://doi.org/10.1080/07391102.2020.1763201

25. M. Monajjemi, A. Sobhanmanesh & F. Mollaamin. Theoretical studies of solvent effects on binding of Sn(CH3)2(N-acetyl-L-cysteinate) with single-walled carbon nanotube. Fuller. Nanotub. Carbon Nanostruct., 21(1), 47–63 (2013). Doi: https://doi.org/10.1080/1536383X.2011.574325

26. P.T. Mpiana, K.t.N. Ngbolua, D.S.T. Tshibangu, J.T. Kilembe, B.Z. Gbolo, D.T. Mwanangombo, C.L. Inkoto, E.M. Lengbiye, C.M. Mbadiko, A. Matondo, G.N. Bongo & D.D. Tshilanda. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chem. Phys. Lett., 754, 137751 (2020). Doi: https://doi.org/10.1016/j.cplett.2020.137751

27. B. Khalili-Hadad, F. Mollaamin & M. Monajjemi. Biophysical chemistry of macrocycles for drug delivery: a theoretical study. Russ. Chem. Bull., 60(2), 238–241 (2011). Doi: https://doi.org/10.1007/s11172-011-0039-5

28. F. Mollaamin & M. Monajjemi. Thermodynamic research on the inhibitors of coronavirus through drug delivery method. J. Chil. Chem. Soc., 66(2), 5195–5205 (2021). Doi: https://doi.org/10.4067/s0717-97072021000205195

29. S. Mazzini, L. Musso, S. Dallavalle & R. Artalli. Putative SARS-CoV-2 Mpro inhibitors from an in-house library of natural and nature-inspired products: A virtual screening and molecular docking study. Molecules, 25(16), 3745 (2020). Doi: https://doi.org/10.3390/molecules25163745

30. F. Mollaamin & M. Monajjemi. Molecular drug discovery of potential inhibitor of Covid–19 using several medicinal plant ingredients: A promising therapy for viral disease. Rev. Fac. Cienc., 13(1), 141–158 (2024). doi: https://doi.org/10.15446/rev.fac.cienc.v13n1.111288

31. M. Alfaro, I. Alfaro & C. Angel. Identification of potential inhibitors of SARS-CoV-2 papain-like protease from tropane alkaloids from Schizanthus porrigens: A molecular docking study. Chem. Phys. Lett., 761, 138068 (2020). Doi: https://doi.org/10.1016/j.cplett.2020.138068

32. F. Mollaamin. Computational methods in the drug delivery of carbon nanocarriers onto several compounds in Sarraceniaceae medicinal plant as monkeypox therapy. Computation, 11(4), 84 (2023). Doi: https://doi.org/10.3390/computation11040084

33. M.E. Olsson, K.E. Gustavsson, S. Andersson, Å. Nilsson & R.-D. Duan. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agricul. Food Chem., 52(24), 7264–7271 (2004). Doi: https://doi.org/10.1021/jf030479p

34. F. Mollaamin & M. Monajjemi. Application of DFT/TD-DFT frameworks in the drug delivery mech-anism: Investigation of chelated bisphosphonate with transition metal cations in bone treatment. Chemistry, 5(1), 365–380 (2023). Doi: https://doi.org/10.3390/chemistry5010027

35. B. Ghalandari, M. Monajjemi & F. Mollaamin. Theoretical investigation of carbon nanotube binding to DNA in view of drug delivery. J. Comput. Theor. Nanosci., 8(7), 1212–1219 (2011). Doi: https://doi.org/10.1166/jctn.2011.1801

36. F. Mollaamin, S. Shahriari & M. Monajjemi. Treating omicron BA.4 & BA.5 via herbal antioxidant asafoetida: A DFT study of carbon nanocarrier in drug delivery. J. Chil. Chem. Soc., 68(1), 5781–5786 (2023). Doi: https://doi.org/10.4067/S0717-97072023000105781

37. E.M. Sarasia, S. Afsharnezhad, B. Honarparvar, F. Mollaamin & M. Monajjemi. Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives. Phys. Chem. Liq., 49(5), 561–571 (2011). Doi: https://doi.org/10.1080/00319101003698992

38. F. Mollaamin & M. Monajjemi. Determination of SWCNT biosensor for bisphosphonate–2X (X = Mg2+, Ca2+, Sr2+) delivery in bone cell through electromagnetic and thermodynamic analysis using QM/MC methods. Sensor Rev., 44(2), 100–112 (2024). Doi: https://doi.org/10.1108/SR-05-2023-0148

39. M. Monajjemi, H. Yamola & F. Mollaamin. Study of bio-nano interaction outlook of amino acids on single-walled carbon nanotubes. Fuller. Nanotub. Carbon Nanostruct., 22(6), 595–603 (2014). Doi: https://doi.org/10.1080/1536383X.2012.702163

40. H.D. Schreiber, A.M. Swink & T.D. Godsey. The chemical mechanism for Al3+ complexing with delphinidin: A model for the bluing of hydrangea sepals. J. Inorg. Biochem., 104(7), 732–739 (2010). Doi: https://doi.org/10.1016/j.jinorgbio.2010.03.006

41. F. Mollaamin & M. Monajjemi. Carbon nanotubes as biosensors for releasing conjugated bisphos-phonates–metal ions in bone tissue: Targeted drug delivery through the DFT Method. C J. Carbon Res., 9(2), 61 (2023). Doi: https://doi.org/10.3390/c9020061

42. F. Mollaamin, S. Shahriari & M. Monajjemi. Therapeutic role of medicinal plants against viral dis-eases focusing on COVID-19: Application of computational chemistry towards drug design. Rev. Colomb. Cienc. Quím. Farm., 53(1), 19–43 (2024). Doi: https://doi.org/10.15446/rcciquifa.v53n1.112978

43. K.N. Chitrala, X. Yang, B. Busbee, N.P. Singh, L. Bonati, Y. Xing, P. Nagarkatti & M. Nagarkatti. Computational prediction and in vitro validation of VEGFR1 as a novel protein target for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci. Reports, 9(1), 6810 (2019). Doi: https://doi.org/10.1038/s41598-019-43232-4

44. F. Mollaamin, S. Shahriari & M. Monajjemi. Drug design of medicinal plants as a treatment of Omi-cron variant (Covid-19 variant B.1.1.529). J. Chil. Chem. Soc., 67(3), 5562–5570 (2022). Doi: https://doi.org/10.4067/s0717-97072022000305562

45. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

46. A.D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98(7), 5648–5652 (1993). Doi: https://doi.org/10.1063/1.464913

47. J.P. Perdew, M. Ernzerhof & K. Burke. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys., 105(22), 9982–9985 (1996). Doi: https://doi.org/10.1063/1.472933

48. F. Mollaamin & M. Monajjemi. Molecular modelling framework of metal-organic clusters for con-serving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Mol. Simulat., 49(4), 365–376 (2023). Doi: https://doi.org/10.1080/08927022.2022.2159996

49. K. Bakhshi, F. Mollaamin & M. Monajjemi. Exchange and correlation effect of hydrogen chemi-sorption on nano V(100) surface: A DFT study by Generalized Gradient Approximation (GGA). J. Comput. Theor. Nanosci., 8, 763–768 (2011). Doi: https://doi.org/10.1166/jctn.2011.1750

50. D. Marko, N. Puppel, Z. Tjaden, S. Jakobs & G. Pahlke. The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation. Mol. Nutr. Food Res., 48(4), 318–325 (2004). Doi: https://doi.org/10.1002/mnfr.200400034

51. N. Katsube, K. Iwashita, T. Tsushida, K. Yamaki & M. Kobori. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agricult. Food Chem., 51(1), 68–75 (2002). Doi: https://doi.org/10.1021/jf025781x

52. S. Zafra‐Stone, T. Yasmin, M. Bagchi, A. Chatterjee, J.A. Vinson & D. Bagchi. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res., 51(6), 675–683 (2007). Doi: https://doi.org/10.1002/mnfr.200700002

53. O. Messaoudi, H. Gouzi, A.N. El-Hoshoudy, F. Benaceur, C. Patel, D. Goswami, D. Boukerouis & M. Bendahou. Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attach-ment and replication; molecular docking simulation. Egypt. J. Petroleum, 30(1), 33–43 (2021). Doi: https://doi.org/10.1016/j.ejpe.2021.01.001

Cómo citar

APA

Mollaamin, F. y Monajjemi, M. (2025). Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches. Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(1), 218–230. https://doi.org/10.15446/rcciquifa.v54n1.119556

ACM

[1]
Mollaamin, F. y Monajjemi, M. 2025. Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches. Revista Colombiana de Ciencias Químico-Farmacéuticas. 54, 1 (abr. 2025), 218–230. DOI:https://doi.org/10.15446/rcciquifa.v54n1.119556.

ACS

(1)
Mollaamin, F.; Monajjemi, M. Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches. Rev. Colomb. Cienc. Quím. Farm. 2025, 54, 218-230.

ABNT

MOLLAAMIN, F.; MONAJJEMI, M. Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 54, n. 1, p. 218–230, 2025. DOI: 10.15446/rcciquifa.v54n1.119556. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/119556. Acesso em: 20 abr. 2025.

Chicago

Mollaamin, Fatemeh, y Majid Monajjemi. 2025. «Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches». Revista Colombiana De Ciencias Químico-Farmacéuticas 54 (1):218-30. https://doi.org/10.15446/rcciquifa.v54n1.119556.

Harvard

Mollaamin, F. y Monajjemi, M. (2025) «Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches», Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(1), pp. 218–230. doi: 10.15446/rcciquifa.v54n1.119556.

IEEE

[1]
F. Mollaamin y M. Monajjemi, «Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches», Rev. Colomb. Cienc. Quím. Farm., vol. 54, n.º 1, pp. 218–230, abr. 2025.

MLA

Mollaamin, F., y M. Monajjemi. «Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 54, n.º 1, abril de 2025, pp. 218-30, doi:10.15446/rcciquifa.v54n1.119556.

Turabian

Mollaamin, Fatemeh, y Majid Monajjemi. «Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches». Revista Colombiana de Ciencias Químico-Farmacéuticas 54, no. 1 (abril 8, 2025): 218–230. Accedido abril 20, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/119556.

Vancouver

1.
Mollaamin F, Monajjemi M. Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 8 de abril de 2025 [citado 20 de abril de 2025];54(1):218-30. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/119556

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

0

Descargas

Los datos de descargas todavía no están disponibles.