Publicado
Antiviral effect of anthocyanins in vegetables and fruits against viral diseases: Insight to medication design by computational chemistry approaches
Efecto antiviral de las antocianinas en verduras y frutas contra enfermedades virales: información sobre el diseño de medicamentos mediante enfoques de química computacional
Efeito antiviral de antocianinas em vegetais e frutas contra doenças virais: uma visão do projeto de medicamentos por meio de abordagens de química computacional
DOI:
https://doi.org/10.15446/rcciquifa.v54n1.119556Palabras clave:
COVID-19, anthocyanins, ion chelation, DFT (en)COVID-19, antocianinas, quelación iónica, DFT (es)
COVID-19, antocianinas, quelação iônica, DFT (pt)
Descargas
Introduction: The probe for ideal medications with absolute antiviral activity against SARS-CoV-2 is still in place, and attention has been recently drawn to medicinal plants. Aims: To evaluate the several molecular targets as points of therapeutic intervention. Methods: Clusters of metal ions of Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+ joined to anthocyanins in water media were studied for unraveling the color shifting of different complexes of these structures in the low ranges of pH using DFT/B3LYP/6–31G (d,p) method. Results: It has been studied the metal cations diffusing of deprotonating for the anthocyanin (B)-ring of Mal, Peo, Del, Pet, Cya in water and applying the IR method for getting the physico-chemical specifications of intensity, frequency, and absorbance of the compounds, respectively. It has been seen that by increasing the pH, the frequency of Al3+Cya, Ga3+Cya, Mg2+Cya complexes increase between pH ≈1.1-1.5. The change in Gibbs free energy change (ΔG) may be the best indicator of the protection offered by dietary stabilizers on anthocyanins, which demonstrated the best stabilizer among dietary compounds as Del with ΔG = −2.92×10-5 kcal/mol. Furthermore, the partial charges and spin density have been gained by matching the electrostatic potential to atomic charge of O+17, O+16 , and O+7 ions for Mn+(31)Cya, Mn+(32)Del and Mn+(35)Pet, respectively. Conclusions: The anthocyanins discussed in this article indicate robust binding affinities and strong inhibitory molecular interactions with the target proteins and could be well exploited as potential medication candidates with potent multiple antiviral impacts against COVID-19 virus.
Introducción: La investigación de medicamentos ideales con actividad antiviral absoluta contra el SARS-CoV-2 aún está en marcha, y recientemente se ha llamado la atención sobre las plantas medicinales. Objetivos: Evaluar los diversos objetivos moleculares como puntos de intervención terapéutica. Métodos: Se estudiaron grupos de iones metálicos de Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+ unidos a antocianinas en medios acuosos para desentrañar el cambio de color de diferentes complejos de estas estructuras en los rangos bajos de pH utilizando el método DFT/B3LYP/6–31G (d,p). Resultados: Se ha estudiado la difusión de cationes metálicos de desprotonación para el anillo de antocianina (B) de Mal, Peo, Del, Pet, Cya en agua y se ha aplicado el método IR para obtener las especificaciones fisicoquímicas de intensidad, frecuencia y absorbancia de los compuestos, respectivamente. Se ha visto que al aumentar el pH, la frecuencia de los complejos Al3+Cya, Ga3+Cya, Mg2+Cya aumenta entre pH ≈1,1-1,5. El cambio en el cambio de energía libre de Gibbs (ΔG) puede ser el mejor indicador de la protección ofrecida por los estabilizadores dietéticos sobre las antocianinas, que demostraron ser el mejor estabilizador entre los compuestos dietéticos como Del con ΔG = −2.92×10-5 kcal/mol. Además, las cargas parciales y la densidad de espín se han obtenido al hacer coincidir el potencial electrostático con la carga atómica de los iones O+17, O+16 y O+7 para Mn+(31)Cya, Mn+(32)Del y Mn+(35)Pet, respectivamente. Conclusiones: Las antocianinas analizadas en este artículo indican afinidades de unión robustas y fuertes interacciones moleculares inhibitorias con las proteínas objetivo y podrían ser bien explotadas como posibles candidatos a medicamentos con potentes impactos antivirales múltiples contra el virus COVID-19.
Introdução: A sonda para medicamentos ideais com atividade antiviral absoluta contra SARS-CoV-2 ainda está em andamento, e a atenção foi recentemente atraída para plantas medicinais. Objetivos: Avaliar os vários alvos moleculares como pontos de intervenção terapêutica. Métodos: Clusters de íons metálicos de Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+ unidos a antocianinas em meio aquoso foram estudados para desvendar a mudança de cor de diferentes complexos dessas estruturas nas baixas faixas de pH usando o método DFT/B3LYP/6–31G (d,p). Resultados: Foi estudada a difusão de cátions metálicos de desprotonação para o anel de antocianina (B) de Mal, Peo, Del, Pet, Cya em água e aplicando o método IR para obter as especificações físico-químicas de intensidade, frequência e absorbância dos compostos, respectivamente. Foi observado que ao aumentar o pH, a frequência dos complexos Al3+Cya, Ga3+Cya, Mg2+Cya aumenta entre pH ≈1,1-1,5. A mudança na mudança de energia livre de Gibbs (ΔG) pode ser o melhor indicador da proteção oferecida pelos estabilizadores dietéticos em antocianinas, que demonstraram o melhor estabilizador entre os compostos dietéticos como Del com ΔG = −2.92×10-5 kcal/mol. Além disso, as cargas parciais e a densidade de spin foram obtidas ao combinar o potencial eletrostático com a carga atômica dos íons O+17, O+16 e O+7 para Mn+(31)Cya, Mn+(32)Del e Mn+(35)Pet, respectivamente. Conclusões: As antocianinas discutidas neste artigo indicam afinidades de ligação robustas e fortes interações moleculares inibitórias com as proteínas alvo e podem ser bem exploradas como potenciais candidatos a medicamentos com múltiplos impactos antivirais potentes contra o vírus COVID-19.
Referencias
1. L. Alomair, S. Mustafa, M.S. Jafri, W. Alharbi, A. Aljouie, F. Almsned M. Alawad, Y.A. Bokhari & M. Rashid. Molecular dynamics simulations to decipher the role of phosphorylation of SARS-CoV-2 nonstructural proteins (nsps) in viral replication. Viruses, 14(11), 2436 (2022). Doi: https://doi.org/10.3390/v14112436
2. M.A.A. Zadeh, H. Lari, L. Kharghanian, E. Balali, R. Khadivi, H. Yahyaei, F. Mollaamin & M. Monajjemi. Density functional theory study and anti-cancer properties of Shyshaq plant: In view point of nano biotechnology. J. Comput. Theoret. Nanosci., 12(11), 4358-4367 (2015). Doi: https://doi.org/10.1166/jctn.2015.4366
3. M. Monajjemi, S. Afsharnezhad, M.R. Jaafari, S. Mirdamadi, F. Mollaamin & H. Monajemi. Inves-tigation of energy and NMR isotropic shift on the internal rotation Barrier of Θ4 dihedral angle of the DLPC: A GIAO study. Chemistry, 17(1), 55–69 (2008).
4. M. Monajjemi, F. Mollaamin & S. Shojaei. An overview on coronaviruses family from past to COVID-19: Introduce some inhibitors as antiviruses from Gillan’s plants. Biointerface Res. Appl. Chem., 10(3), 5575–5585 (2020). Doi: https://doi.org/10.33263/briac103.575585
5. S. Shahriari, M. Monajjemi & F. Mollaamin. Determination of proteins specification with SARS-Covid-19 based ligand designing. J. Chil. Chem. Soc., 67(2), 5468–5476 (2022). Doi: https://doi.org/10.4067/s0717-97072022000205468
6. A. Majeed & X. Zhang. On the adoption of modern technologies to fight the COVID-19 pandemic: A technical synthesis of latest developments. COVID, 3(1), 90–123 (2023). Doi: https://doi.org/10.3390/covid3010006
7. F. Mollaamin. Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos. Rev. Colomb. Quím., 52(2), 28–35 (2024). Doi: https://doi.org/10.15446/rev.colomb.quim.v52n2.111888
8. F. Mollaamin. Characterizing the structural and physicochemical properties of medicinal plants as a proposal for treating of viral malady. Trends Immunother., 7(2), 2329 (2023). Doi: https://doi.org/10.24294/ti.v7.i2.2329
9. F. Mollaamin & M. Monajjemi. Thermodynamic research on the inhibitors of coronavirus through drug delivery method. J. Chil. Chem. Soc., 66(2), 5195–5205 (2021). Doi: https://doi.org/10.4067/s0717-97072021000205195
10. A. Tahan, F. Mollaamin & M. Monajjemi. Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russ. J. Phys. Chem. A, 83(4), 587–597 (2009). Doi: https://doi.org/10.1134/S003602440904013X
11. F. Mollaamin. Structural and functional characterization of medicinal plants as selective antibodies towards therapy of COVID-19 symptoms. Antibodies, 13(2), 38 (2024). Doi: https://doi.org/10.3390/antib13020038
12. F. Zeng, Y. Huang, Y. Guo, M. Yin, X. Chen, L. Xiao & G. Deng. Association of inflammatory mark-ers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis., 96, 467–474 (2020). Doi: https://doi.org/10.1016/j.ijid.2020.05.055
13. F. Mollaamin. Physicochemical investigation of anti-covid19 drugs using several medicinal plants. J. Chil. Chem. Soc., 67(2), 5537–5546 (2022). Doi: https://doi.org/10.4067/s0717-97072022000205537
14. Q.M.S. Jamal. Antiviral potential of plants against COVID-19 during outbreaks—An update. Int. J. Mol. Sci., 23(21), 13564 (2022). Doi: https://doi.org/10.3390/ijms232113564
15. J. Remali & W.M. Aizat. A review on plant bioactive compounds and their modes of action against coronavirus infection. Front. Pharmacol., 11, 589044 (2021). Doi: https://doi.org/10.3389/fphar.2020.589044
16. F. Mollaamin, S. Shahriari & M. Monajjemi. Monkeypox disease treatment by tecovirimat adsorbed onto single-walled carbon nanotube through drug delivery method. J. Chil. Chem. Soc., 68(1), 5796–5801 (2023). Doi: https://doi.org/10.4067/s0717-97072023000105796
17. T. Capell, R.M. Twyman, V. Armario-Najera, J.K.-C. Ma, S. Schillberg & P. Christou. Potential ap-plications of plant biotechnology against SARS-CoV-2. Trends Plant Sci., 25(7), 635–643 (2020). Doi: https://doi.org/10.1016/j.tplants.2020.04.009
18. F. Mollaamin & M. Monajjemi. B5N10 Nanocarrier functionalized with Al, C, Si atoms: A drug de-livery method for infectious disease remedy. OBM Genetics, 08(01), 214 (2024). Doi: https://doi.org/10.21926/obm.genet.2401214
19. S. Murugesan, C. Ragavendran, A. Ali, V. Arumugam, D.K. Lakshmanan, P. Palanichamy, et al. Screening and druggability analysis of marine active metabolites against SARS-CoV-2: An integra-tive computational approach. Int. J. Transl. Med., 3(1), 27–41 (2022). Doi: https://doi.org/10.3390/ijtm3010003
20. M.L. Castro-Acosta, G.N. Lenihan-Geels, C.P. Corpe & W.L. Hall. Berries and anthocyanins: prom-ising functional food ingredients with postprandial glycaemia-lowering effects. Proc. Nutr. Soc., 75(3), 342–355 (2016). Doi: https://doi.org/10.1017/s0029665116000240
21. O. Paredes-López, M.L. Cervantes-Ceja, M. Vigna-Pérez & T. Hernández-Pérez. Berries: Improving human health and healthy aging, and promoting quality life—A review. Plant Foods Hum. Nutr., 65(3), 299–308 (2010). Doi: https://doi.org/10.1007/s11130-010-0177-1
22. F. Mollaamin & M. Monajjemi. Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease. Rev. Colomb. Cienc. Quím. Farm., 53(2), 430–454 (2024). Doi: https://doi.org/10.15446/rcciq-uifa.v53n2.114450
23. P.H.M. Torres, A.C.R. Sodero, P. Jofily & F.P. Silva, Jr. Key topics in molecular docking for drug design. Int. J. Mol. Sci., 20(18), 4574 (2019). Doi: https://doi.org/10.3390/ijms20184574
24. S. Das, S. Sarmah, S. Lyndem & A.S. Roy. An investigation into the identification of potential in-hibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn., 39(9), 3347–3357 (2021). Doi: https://doi.org/10.1080/07391102.2020.1763201
25. M. Monajjemi, A. Sobhanmanesh & F. Mollaamin. Theoretical studies of solvent effects on binding of Sn(CH3)2(N-acetyl-L-cysteinate) with single-walled carbon nanotube. Fuller. Nanotub. Carbon Nanostruct., 21(1), 47–63 (2013). Doi: https://doi.org/10.1080/1536383X.2011.574325
26. P.T. Mpiana, K.t.N. Ngbolua, D.S.T. Tshibangu, J.T. Kilembe, B.Z. Gbolo, D.T. Mwanangombo, C.L. Inkoto, E.M. Lengbiye, C.M. Mbadiko, A. Matondo, G.N. Bongo & D.D. Tshilanda. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chem. Phys. Lett., 754, 137751 (2020). Doi: https://doi.org/10.1016/j.cplett.2020.137751
27. B. Khalili-Hadad, F. Mollaamin & M. Monajjemi. Biophysical chemistry of macrocycles for drug delivery: a theoretical study. Russ. Chem. Bull., 60(2), 238–241 (2011). Doi: https://doi.org/10.1007/s11172-011-0039-5
28. F. Mollaamin & M. Monajjemi. Thermodynamic research on the inhibitors of coronavirus through drug delivery method. J. Chil. Chem. Soc., 66(2), 5195–5205 (2021). Doi: https://doi.org/10.4067/s0717-97072021000205195
29. S. Mazzini, L. Musso, S. Dallavalle & R. Artalli. Putative SARS-CoV-2 Mpro inhibitors from an in-house library of natural and nature-inspired products: A virtual screening and molecular docking study. Molecules, 25(16), 3745 (2020). Doi: https://doi.org/10.3390/molecules25163745
30. F. Mollaamin & M. Monajjemi. Molecular drug discovery of potential inhibitor of Covid–19 using several medicinal plant ingredients: A promising therapy for viral disease. Rev. Fac. Cienc., 13(1), 141–158 (2024). doi: https://doi.org/10.15446/rev.fac.cienc.v13n1.111288
31. M. Alfaro, I. Alfaro & C. Angel. Identification of potential inhibitors of SARS-CoV-2 papain-like protease from tropane alkaloids from Schizanthus porrigens: A molecular docking study. Chem. Phys. Lett., 761, 138068 (2020). Doi: https://doi.org/10.1016/j.cplett.2020.138068
32. F. Mollaamin. Computational methods in the drug delivery of carbon nanocarriers onto several compounds in Sarraceniaceae medicinal plant as monkeypox therapy. Computation, 11(4), 84 (2023). Doi: https://doi.org/10.3390/computation11040084
33. M.E. Olsson, K.E. Gustavsson, S. Andersson, Å. Nilsson & R.-D. Duan. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agricul. Food Chem., 52(24), 7264–7271 (2004). Doi: https://doi.org/10.1021/jf030479p
34. F. Mollaamin & M. Monajjemi. Application of DFT/TD-DFT frameworks in the drug delivery mech-anism: Investigation of chelated bisphosphonate with transition metal cations in bone treatment. Chemistry, 5(1), 365–380 (2023). Doi: https://doi.org/10.3390/chemistry5010027
35. B. Ghalandari, M. Monajjemi & F. Mollaamin. Theoretical investigation of carbon nanotube binding to DNA in view of drug delivery. J. Comput. Theor. Nanosci., 8(7), 1212–1219 (2011). Doi: https://doi.org/10.1166/jctn.2011.1801
36. F. Mollaamin, S. Shahriari & M. Monajjemi. Treating omicron BA.4 & BA.5 via herbal antioxidant asafoetida: A DFT study of carbon nanocarrier in drug delivery. J. Chil. Chem. Soc., 68(1), 5781–5786 (2023). Doi: https://doi.org/10.4067/S0717-97072023000105781
37. E.M. Sarasia, S. Afsharnezhad, B. Honarparvar, F. Mollaamin & M. Monajjemi. Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives. Phys. Chem. Liq., 49(5), 561–571 (2011). Doi: https://doi.org/10.1080/00319101003698992
38. F. Mollaamin & M. Monajjemi. Determination of SWCNT biosensor for bisphosphonate–2X (X = Mg2+, Ca2+, Sr2+) delivery in bone cell through electromagnetic and thermodynamic analysis using QM/MC methods. Sensor Rev., 44(2), 100–112 (2024). Doi: https://doi.org/10.1108/SR-05-2023-0148
39. M. Monajjemi, H. Yamola & F. Mollaamin. Study of bio-nano interaction outlook of amino acids on single-walled carbon nanotubes. Fuller. Nanotub. Carbon Nanostruct., 22(6), 595–603 (2014). Doi: https://doi.org/10.1080/1536383X.2012.702163
40. H.D. Schreiber, A.M. Swink & T.D. Godsey. The chemical mechanism for Al3+ complexing with delphinidin: A model for the bluing of hydrangea sepals. J. Inorg. Biochem., 104(7), 732–739 (2010). Doi: https://doi.org/10.1016/j.jinorgbio.2010.03.006
41. F. Mollaamin & M. Monajjemi. Carbon nanotubes as biosensors for releasing conjugated bisphos-phonates–metal ions in bone tissue: Targeted drug delivery through the DFT Method. C J. Carbon Res., 9(2), 61 (2023). Doi: https://doi.org/10.3390/c9020061
42. F. Mollaamin, S. Shahriari & M. Monajjemi. Therapeutic role of medicinal plants against viral dis-eases focusing on COVID-19: Application of computational chemistry towards drug design. Rev. Colomb. Cienc. Quím. Farm., 53(1), 19–43 (2024). Doi: https://doi.org/10.15446/rcciquifa.v53n1.112978
43. K.N. Chitrala, X. Yang, B. Busbee, N.P. Singh, L. Bonati, Y. Xing, P. Nagarkatti & M. Nagarkatti. Computational prediction and in vitro validation of VEGFR1 as a novel protein target for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci. Reports, 9(1), 6810 (2019). Doi: https://doi.org/10.1038/s41598-019-43232-4
44. F. Mollaamin, S. Shahriari & M. Monajjemi. Drug design of medicinal plants as a treatment of Omi-cron variant (Covid-19 variant B.1.1.529). J. Chil. Chem. Soc., 67(3), 5562–5570 (2022). Doi: https://doi.org/10.4067/s0717-97072022000305562
45. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
46. A.D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98(7), 5648–5652 (1993). Doi: https://doi.org/10.1063/1.464913
47. J.P. Perdew, M. Ernzerhof & K. Burke. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys., 105(22), 9982–9985 (1996). Doi: https://doi.org/10.1063/1.472933
48. F. Mollaamin & M. Monajjemi. Molecular modelling framework of metal-organic clusters for con-serving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Mol. Simulat., 49(4), 365–376 (2023). Doi: https://doi.org/10.1080/08927022.2022.2159996
49. K. Bakhshi, F. Mollaamin & M. Monajjemi. Exchange and correlation effect of hydrogen chemi-sorption on nano V(100) surface: A DFT study by Generalized Gradient Approximation (GGA). J. Comput. Theor. Nanosci., 8, 763–768 (2011). Doi: https://doi.org/10.1166/jctn.2011.1750
50. D. Marko, N. Puppel, Z. Tjaden, S. Jakobs & G. Pahlke. The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation. Mol. Nutr. Food Res., 48(4), 318–325 (2004). Doi: https://doi.org/10.1002/mnfr.200400034
51. N. Katsube, K. Iwashita, T. Tsushida, K. Yamaki & M. Kobori. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agricult. Food Chem., 51(1), 68–75 (2002). Doi: https://doi.org/10.1021/jf025781x
52. S. Zafra‐Stone, T. Yasmin, M. Bagchi, A. Chatterjee, J.A. Vinson & D. Bagchi. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res., 51(6), 675–683 (2007). Doi: https://doi.org/10.1002/mnfr.200700002
53. O. Messaoudi, H. Gouzi, A.N. El-Hoshoudy, F. Benaceur, C. Patel, D. Goswami, D. Boukerouis & M. Bendahou. Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attach-ment and replication; molecular docking simulation. Egypt. J. Petroleum, 30(1), 33–43 (2021). Doi: https://doi.org/10.1016/j.ejpe.2021.01.001
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13