Publicado
Desarrollo y caracterización de un comprimido flotante a base de arcilla Montmorillonita y HPMC para liberación prolongada
Development and characterization of a floating tablet based on Montmorillonite clay and HPMC for prolonged release
Desenvolvimento e caracterização de um comprimido flutuante à base de argila montmorilonita e HPMC para liberação prolongada
DOI:
https://doi.org/10.15446/rcciquifa.v54n1.119558Palabras clave:
Comprimidos flotantes, liberación prolongada, Montmorillonita, HPMC, Metformina (es)Floating tablets, extended release, Montmorillonite, HPMC, Metformin (en)
Pastilhas flutuantes, liberação prolongada, Montmorilonita, HPMC, Metformina (pt)
Descargas
Introducción: los comprimidos flotantes consisten sistemas de baja densidad que pueden flotar en el contenido gástrico, por acción de atrapamiento de aire, ya sea con cámaras de aire o agentes efervescentes, manteniéndose por más tiempo en el estómago permitiendo un perfil de liberación prolongada. La combinación de arcillas y polímeros en el desarrollo de nuevos sistemas de liberación de fármacos resulta muy útil pues se mejora las propiedades mecánicas, la estabilidad, la resistencia a disolventes o gases, mejora propiedades superficiales y la biocompatibilidad. Objetivo: Desarrollo y caracterización de un sistema flotante efervescente para liberación prolongada, a base de HPMC y arcilla Montmorillonita. Métodos: Se fabricaron los comprimidos mediante granulación vía húmeda y se caracterizaron mediante pruebas farmacopéicas incluyendo estudios de liberación in vitro empleando metformina como fármaco modelo. Resultados: Mediante un diseño Taguchi L32 se obtuvieron 4 formulaciones de comprimidos flotantes con tiempos de liberación de 8 hasta 24 h. Las formulaciones 2 y 4 cumplieron con los requisitos de para liberación prolongada de acuerdo a la USP. Se observo que la combinación de HPMC y Montmorillonita favoreció la liberación prolongada mediante la formación de gel y aumento en la tortuosidad. Conclusiones: Se obtuvieron cuatro formulaciones de comprimidos flotantes efervescentes de liberación prolongada. La combinación de arcilla Montmorillonita y HPMC tuvo un impacto en las propiedades estructurales y de barrera (tortuosidad) para controlar la liberación, la cual depende de la proporción empleada en la combinación de polímero y arcilla y su capacidad para estabilizar la estructura del gel.
Introduction: Floating tablets consist of low-density systems that can float in the gastric contents, by air entrapment action, either with air chambers or effervescent agents, remaining longer in the stomach allowing a prolonged release profile. The combination of clays and polymers in the development of new drug delivery systems is very useful as it improves mechanical properties, stability, resistance to solvents or gases, improves surface properties and biocompatibility. Objective: Development and characterization of an effervescent floating system for prolonged release, based on HPMC and Montmorillonite clay. Methods: The tablets were manufactured by wet granulation and characterized by pharmacopoeial tests including in vitro release studies using metformin as a model drug. Results: Using a Taguchi design, 4 formulations of floating tablets with release times of 8 to 24 h were obtained. Formulations 2 and 4 met USP extended-release requirements. It was observed that the combination of HPMC and Montmorillonite favored prolonged release through gel formation and increased tortuosity. Conclusions: Four formulations of extended-release effervescent floating tablets were obtained. The combination of Montmorillonite clay and HPMC had an impact on the structural and barrier properties (tortuosity) to control release, which depends on the ratio used in the polymer-clay combination and its ability to stabilize the gel structure.
Introdução: Os comprimidos flutuantes consistem em sistemas de baixa densidade que podem flutuar no conteúdo gástrico por aprisionamento de ar, seja com câmaras de ar ou agentes efervescentes, permanecendo mais tempo no estômago, permitindo um perfil de liberação prolongado. A combinação de argilas e polímeros no desenvolvimento de novos sistemas de administração de fármacos é muito útil porque melhora as propriedades mecânicas, a estabilidade, a resistência a solventes ou gases, melhora as propriedades da superfície e melhora a biocompatibilidade. Objetivo: Desenvolvimento e caracterização de um sistema flutuante efervescente de liberação prolongada, à base de HPMC e argila montmorilonita. Métodos: Os comprimidos foram fabricados por granulação úmida e caracterizados por testes farmacopeicos, incluindo estudos de liberação in vitro usando metformina como medicamento modelo. Resultados: Utilizando um delineamento Taguchi L32, foram obtidas 4 formulações de comprimidos flutuantes com tempos de liberação de 8 a 24 h. As formulações 2 e 4 atenderam aos requisitos de liberação prolongada de acordo com a USP. Observou-se que a combinação de HPMC e montmorilonita favoreceu a liberação prolongada através da formação de gel e aumentou a tortuosidade. Conclusões: Foram obtidas quatro formulações de comprimidos efervescentes flutuantes de liberação prolongada. A combinação de argila montmorilonita e HPMC teve impacto nas propriedades estruturais e de barreira (tortuosidade) para controlar a liberação, que depende da proporção usada na combinação de polímero e argila e sua capacidade de estabilizar a estrutura do gel.
Referencias
1. H.W. Huh, Y.-G. Na, H.C. Kang, M. Kim, M. Han, T.M.A. Pham, H. Lee, J.-S. Baek, H.-K. Lee & C.-W. Cho. Novel self-floating tablet for enhanced oral bioavailability of metformin based on cellu-lose. Int. J. Pharm., 592, 120113 (2021). Doi: https://doi.org/10.1016/j.ijpharm.2020.120113
2. L. Fitriani, R. Abdillah & E.S. Ben. Formulation of Metformin HCl floating tablet using HPC, HPMC K100M, and the combinations. J. Sains Farm. Klin., 4(1), 79–82 (2017). URL: https://jsfk.ffar-masi.unand.ac.id/index.php/jsfk/issue/view/7
3. M.A. El Nabarawi, M.H. Teaima, R.A.A. El-Monem, N.A. El Nabarawy & D.A. Gaber. Formulation, release characteristics, and bioavailability study of gastroretentive floating matrix tablet and float-ing raft system of Mebeverine HCl. Drug Design Develop. Ther., 11, 1081–1093 (2017). Doi: https://doi.org/10.2147/dddt.s131936
4. S. Jayrajsinh, G. Shankar, Y.K. Agrawal & L. Bakre. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J. Drug Deliv. Sci. Technol., 39, 200-209 (2017). Doi: https://doi.org/10.1016/j.jddst.2017.03.023
5. C.I. Idumah, U.C. Okonkwo & C.M. Obele. Recently emerging advancements in montmorillonite polymeric nanoarchitectures and applications. Clean. Mater., 4, 100071 (2022). Doi: https://doi.org/10.1016/j.clema.2022.100071
6. K. Someshwar, K. Chithaluru, T. Ramarao & K.K. Kumar. Formulation and evaluation of efferves-cent floating tablets of tizanidine hydrochloride. Acta Pharm., 61(2), 217–226 (2011). Doi: https://doi.org/10.2478/v10007-011-0015-5
7. X. Yin, H. Li, Z. Guo, L. Wu, F. Chen, M.d. Matas, Q. Shao, T. Xiao, P. York, Y. He & J. Zhang. Quantification of swelling and erosion in the controlled release of a poorly water-soluble drug us-ing synchrotron X-ray computed microtomography. AAPS J., 15(4), 1025–1034 (2013). Doi: https://doi.org/10.1208/s12248-013-9498-y
8. M. Rahamathulla, S.M. Alsahhrani, A. Al Saqr, A. Alshetaili & F. Shakeel. Effervescent floating matrix tablets of a novel anti-cancer drug neratinib for breast cancer treatment. J. Drug Deliv. Sci. Technol., 66, 102788 (2021). Doi: https://doi.org/10.1016/j.jddst.2021.102788
9. M. Djebbar, N. Chaffai & F. Bouchal. Development of floating tablets of metformin HCl by ther-moplastic granulation. Part II: In vitro evaluation of the combined effect of acacia Gum/HPMC on biopharmaceutical performances. Adv. Pharm. Bull., 10(3), 399–407 (2020). Doi: https://doi.org/10.34172/apb.2020.048
10. B. Kim, Y. Byun & E.H. Lee. DoE-based design of a simple but efficient preparation method for a non-effervescent gastro-retentive floating tablet containing metformin HCl. Pharmaceutics, 13(8), 1225 (2021). Doi: https://doi.org/10.3390/pharmaceutics13081225
11. S.N. Sapavatu & R.K. Jadi. Formulation development and characterization of gastroretentive drug delivery systems of loratadine. Int. J. Appl. Pharm., 11(6), 91–99 (2019). Doi: https://doi.org/10.22159/ijap.2019v11i6.35194
12. J.A. Alkrad, R.A. Shmeis, I. Alshwabkeh, H. Abazid & M.A. Mohammad. Investigation of the po-tential application of sodium bentonite as an excipient in formulation of sustained release tablets. Asian J. Pharm. Sci., 12(3), 259–265 (2017). Doi: https://doi.org/10.1016/j.ajps.2017.01.004
13. R.M. Kaoud, A.H. Khalaf & J.A. Alkrad. Development of sustained release alogliptin tablets using a multiparticulates system made of bentonite. Int. J. Appl. Pharm., 13(3), 68–73 (2021). Doi: https://doi.org/10.22159/ijap.2021v13i3.40664
14. S. Choiri & A. Ainurofiq. Understanding the drug release mechanism from a montmorillonite ma-trix and its binary mixture with a hydrophilic polymer using a compartmental modelling approach. IOP Conf. Ser.: Mater. Sci. Eng., 333(1), 012065 (2018). Doi: https://doi.org/10.1088/1757-899X/333/1/012065
15. E. Moussa, F. Siepmann, M.P. Flament, Y. Benzine, F. Penz, J. Siepmann & Y. Karrout. Controlled release tablets based on HPMC:lactose blends. J. Drug Deliv. Sci. Technol., 52, 607–617 (2019). Doi: https://doi.org/10.1016/j.jddst.2019.05.028
16. P. Okolo, S. Omonmhenle, A. Abdulsalaam & C. Ofunne. Novel applications of locally sourced montmorillonite (MMT) clay as a disintegrant in the formulation of pharmaceutical product. Bayero J. Pure Appl. Sci., 8(1), 153–159 (2015). Doi: https://doi.org/10.4314/bajopas.v8i1.27
17. S.L. Bee, M.A.A. Abdullah, S.T. Bee, L.T. Sin & A.R. Rahmat. Polymer nanocomposites based on silylated-montmorillonite: A review. Prog. Polym. Sci., 85, 57–82 (2018). Doi: https://doi.org/10.1016/j.progpolymsci.2018.07.003
18. P. Thapa & S.H. Jeong. Effects of formulation and process variables on gastroretentive floating tab-lets with a high-dose soluble drug and experimental design approach. Pharmaceutics, 10(3), 161 (2018). Doi: https://doi.org/10.3390/pharmaceutics10030161
19. K.H. Ramteke, P.A. Dighe, A.R. Kharat & S.V. Patil. Mathematical models of drug dissolution: A review. Scholars Acad. J. Pharm., 3(5), 388–396 (2014). URL: https://saspublishers.com/media/arti-cles/SAJP35388-396.pdf
20. J. Ji, X. He, X.-L. Yang, W.-J. Du, C.-L. Cui, L. Wang, X. Wang, C.-F. Zhang & C.-R. Guo. The in vitro/vivo evaluation of prepared gastric floating tablets of berberine hydrochloride. AAPS PharmS-ciTech, 18(6), 2149–2156 (2017). Doi: https://doi.org/10.1208/s12249-016-0696-7
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13