Publicado
Puntos cuánticos de carbono: Un enfoque nanotecnológico para la encapsulación de fármacos
Carbon Quantum Dots: A nanotechnological approach to drug encapsulation
Pontos quânticos de carbono: uma abordagem nanotecnológica para encapsulamento de medicamentos
DOI:
https://doi.org/10.15446/rcciquifa.v55n1.120972Palabras clave:
Nanopartículas, nanotecnología, nanomateriales, puntos cuánticos, nanopartículas de carbono, liberación controlada (es)Nanoparticles, nanotechnology, nanomaterials, quantum dots, carbon nanoparticles, drug delivery systems (en)
Descargas
Introducción: A la vanguardia de la nueva tendencia de las nanopartículas emergentes en la familia de nanomateriales carbónicos, los “Puntos cuánticos de carbono” se proyectan como una alternativa para múltiples aplicaciones biomédicas. Estos biomateriales a base de carbono con dimensiones inferiores a 10 nm se caracterizan por su emisión fluorescente. Objetivo: En el presente artículo se analizan los conceptos más relevantes de las nanopartículas tipo “Puntos cuánticos de carbono” como portadores de fármacos para aplicaciones terapéuticas. Métodos: La búsqueda incluyó las siguientes bases de datos especializadas PubMed/Medline, Cochrane Library, SciELO y el motor de búsqueda Google Scholar. Para la búsqueda se utilizó vocabulario controlado (MeSH y DeCS), empleando los términos definidos para esta revisión como “Nanoparticles”, “Nanotechnology”, “Nanomaterials”, “Quantum Dots”, “Carbon nanoparticles”, “Drug delivery systems”. Hallazgos: Los Puntos cuánticos de carbono al ser pequeñas nanopartículas fluorescentes pueden sintetizarse rápidamente mediante diversas rutas económicas y sencillas, lo que los convierte en una alternativa viable frente a otros nanomateriales fluorescentes. El uso de estas nanopartículas en la nanomedicina abarca el empleo de tecnologías de soporte o plantillas mediante la funcionalización o encapsulación de fármacos. Estas nanopartículas pueden imitar o modificar procesos biológicos, permitiendo abordar problemas asociados con la solubilidad, biodisponibilidad, inmunocompatibilidad y citotoxicidad de muchos de los medicamentos de uso tradicional. Conclusión: La aplicación de los “Puntos cuánticos de carbono” en futuras innovaciones en el campo de la nanomedicina podría generar entidades multifuncionales capaces de diagnosticar, tratar y monitorear el tratamiento simultáneamente. De igual manera, el estudio de la citotoxicidad debe ser abordado para lograr un andamio altamente efectivo en la liberación controlada de fármacos.
Introduction: At the forefront of the emerging trend in carbon-based nanomaterials, Carbon Quantum Dots (CQDs) are positioned as a promising alternative for a wide range of biomedical applications. These carbon-derived biomaterials, with dimensions below 10 nm, are distinguished by their fluorescent emission. Objective: This article analyzes the most relevant concepts surrounding Carbon Quantum Dots as drug carriers for therapeutic applications. Methods: The literature search included the following specialized databases: PubMed/Medline, Cochrane Library, SciELO, and the search engine Google Scholar. Controlled vocabulary (MeSH and DeCS) was employed, using the terms defined for this review: “Nanoparticles,” “Nanotechnology,” “Nanomaterials,” “Quantum Dots,” “Carbon nanoparticles,” and “Drug delivery systems.” Findings: Due to their small size and fluorescent properties, CQDs can be synthesized rapidly through various cost-effective and straightforward methods, making them a viable alternative to other fluorescent nanomaterials. Their use in nanomedicine encompasses support technologies or scaffolds for drug functionalization or encapsulation. These nanoparticles can mimic or modulate biological processes, offering solutions to longstanding challenges related to solubility, bioavailability, immunocompatibility, and cytotoxicity of many conventional drugs. Conclusion: The application of Carbon Quantum Dots in future innovations within nanomedicine could lead to the development of multifunctional platforms capable of diagnosing, treating, and monitoring therapy simultaneously. Likewise, the issue of cytotoxicity must be addressed in depth to achieve highly effective scaffolds for controlled drug release.
Introdução: Na vanguarda da nova tendência das nanopartículas emergentes na família dos nanomateriais carbônicos, os “pontos quânticos de carbono” são projetados como uma alternativa para múltiplas aplicações biomédicas. Esses biomateriais à base de carbono com dimensões inferiores a 10 nm são caracterizados por sua emissão fluorescente. Objetivo: No presente artigo são analisados os conceitos mais relevantes das nanopartículas como “Pontos Quânticos de Carbono” como portadores de medicamentos para aplicações terapêuticas. Métodos: A pesquisa incluiu as seguintes bases de dados especializadas PubMed/Medline, Cochrane Library, SciELO e o motor de pesquisa Google Scholar. Para a pesquisa foi utilizado um vocabulário controlado (MeSH e DeCS), empregando os termos definidos para esta revisão como “Nanopartículas”, “Nanotecnologia”, “Nanomateriais”, “Pontos Quânticos”, “Nanopartículas de carbono”, “Sistemas de distribuição de medicamentos”. Hallazgos: Os pontos quânticos de carbono, como pequenas nanopartículas fluorescentes, podem ser sintetizados rapidamente em diversas rotas econômicas e sencilais, o que os converte em uma alternativa viável diante de outros nanomateriais fluorescentes. O uso dessas nanopartículas na nanomedicina abandonou o emprego de tecnologias de suporte ou plantas por meio da funcionalização ou encapsulamento de medicamentos. Estas nanopartículas podem imitar ou modificar processos biológicos, permitindo abordar problemas associados à solubilidade, biodisponibilidade, imunocompatibilidade e citotoxicidade de muitos dos medicamentos de uso tradicional. Conclusão: A aplicação dos “Pontos Quânticos de Carbono” em futuras inovações no campo da nanomedicina poderá gerar entidades multifuncionais capazes de diagnosticar, tratar e monitorar o tratamento simultaneamente. Da mesma forma, o estudo de citotoxicidade deve ser abordado para lograr um estudo altamente eficaz na liberação controlada de medicamentos.
Referencias
1. A. Haleem, M. Javaid, R.P. Singh, S. Rab & R. Suman. Applications of nanotechnology in medical field: a brief review. Global Health Journal, 7(2), 70–77 (2023). https://doi.org/10.1016/j.glohj.2023.02.008
2. R.P. Feynman. There’s plenty of room at the bottom. Resonance, 16(9), 890–898 (2011). https://doi.org/10.1007/s12045-011-0109-x
3. M.C. Roco. Nanotechnology: convergence with modern biology and medicine. Current Opinion in Biotechnology, 14(3), 337–346 (2003). https://doi.org/10.1016/S0958-1669(03)00068-5
4. Z. Xie, X. Li, R. Li, S. Lu, W. Zheng, D. Tu, Y. Feng & X. Chen. In situ confined growth of ultrasmall perovskite quantum dots in metal–organic frameworks and their quantum confinement effect. Nanoscale, 12(32), 17113–17120 (2020). https://doi.org/10.1039/d0nr04741d
5. B. Rooj & U. Mandal. A review on characterization of carbon quantum dots. Vietnam Journal of Chemistry, 61(6), 693–718 (2023). https://doi.org/10.1002/vjch.202300022
6. P. Singh, V. Bhankar, S. Kumar & K. Kumar. Biomass-derived carbon dots as significant biological tools in the medicinal field: A review. Advances in Colloid and Interface Science, 328, 103182 (2024). https://doi.org/10.1016/j.cis.2024.103182
7. Z. Li, Z. Liu, H. Sun & C. Gao. Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chemical Reviews, 115(15), 7046–7117 (2015). https://doi.org/10.1021/acs.chemrev.5b00102
8. M. Gaur, C. Misra, A.B. Yadav, S. Swaroop, F.Ó. Maolmhuaidh, M. Bechelany & A. Barhoum. Biomedical applications of carbon nanomaterials: fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials, 14(20), 5978 (2021). https://doi.org/10.3390/ma14205978
9. V. Harish, D. Tewari, M. Gaur, A.B. Yadav, S. Swaroop, M. Bechelany & A. Barhoum. Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials, 12(3), 457 (2022). https://doi.org/10.3390/nano12030457
10. Y. Wang & A. Hu. Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921–6939 (2014). https://doi.org/10.1039/c4tc00988f
11. S.E. Elugoke, G.E. Uwaya, T.W. Quadri & E.E. Ebenso. Carbon quantum dots: Basics, properties, and fundamentals. En: Carbon Dots: Recent Developments and Future Perspectives. ACS Symposium Series, 1465, 2024, pp. 3–42. https://doi.org/10.1021/bk-2024-1465.ch001
12. H.-L. Yang, L.-F. Bai, Z.-R. Geng, H. Chen, L.-T. Xu, Y.-C. Xie, D.-J. Wang, H.-W. Gu & X.-M. Wang. Carbon quantum dots: Preparation, optical properties, and biomedical applications. Materials Today Advances, 18, 100376 (2023). https://doi.org/10.1016/j.mtadv.2023.100376
13. A. Ben-Amor, H. Hemmami, I. Ben-Amor, S. Zeghoud, A.A. Alhamad, M. Belkacem, N.S. Nair & A.B. Sruthimol. Advances in carbon quantum dot applications: Catalysis, sensing, and biomedical innovations. Materials Science in Semiconductor Processing, 185, 108945 (2025). https://doi.org/10.1016/j.mssp.2024.108945
14. B. Acharya, A. Behera, S. Behera & S. Moharana. Carbon quantum dots: A systematic overview of recent developments in synthesis, properties, and novel therapeutic applications. Inorganic Chemistry Communications, 165, 112492 (2024). https://doi.org/10.1016/j.inoche.2024.112492
15. G.-W. Deng, N. Xu & W.-J. Li. Gate-defined quantum dots: Fundamentals and applications. En: P. Yu & Z. Wang (editores). Quantum Dot Optoelectronic Devices. Springer Cham, 2020, pp. 107–133. https://doi.org/10.1007/978-3-030-35813-6_4
16. L. Manna. The bright and enlightening science of quantum dots. Nano Letters, 23(21), 9673–9676 (2023). https://doi.org/10.1021/acs.nanolett.3c03904
17. J. Cassidy & M. Zamkov. Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius. The Journal of Chemical Physics, 152(11), 110902 (2020). https://doi.org/10.1063/1.5126423
18. N. Azam, M.N. Ali & T.J. Khan. Carbon quantum dots for biomedical applications: Review and analysis. Frontiers in Materials, 8, 700403 (2021). https://doi.org/10.3389/fmats.2021.700403
19. M.J. Molaei. Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Advances, 9, 6460–6481 (2019). https://doi.org/10.1039/c8ra08088g
20. N.A. Pechnikova, K. Domvri, K. Porpodis, M.S. Istomina, A.V. Iaremenko & A.V. Yaremenko. Carbon quantum dots in biomedical applications: Advances, challenges, and future prospects. Aggregate, 6(3), e707 (2025) https://doi.org/10.1002/agt2.707
21. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker & W.A. Scrivens. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h
22. J. Kong, Y. Wei, F. Zhou, L. Shi, S. Zhao, M. Wan & X. Zhang. Carbon quantum dots: Properties, preparation, and applications. Molecules, 29(9), 2002 (2024). https://doi.org/10.3390/molecules29092002
23. X. Guan, Z. Li, X. Geng, Z. Lei, A. Karakoti, T. Wu, P. Kumar, J. Yi & A. Vinu. Emerging trends of carbon-based quantum dots: Nanoarchitectonics and applications. Small, 19(17), 2207181 (2023). https://doi.org/10.1002/smll.202207181
24. A.M. Díez-Pascual. Carbon-based nanomaterials. International Journal of Molecular Sciences, 22(14), 7726 (2021). https://doi.org/10.3390/ijms22147726
25. L. Cui, X. Ren, M. Sun, H. Liu & L. Xia. Carbon dots: Synthesis, properties and applications. Nanomaterials, 11(12), 3419 (2021). https://doi.org/10.3390/nano11123419
26. B. Wang, H. Cai, G.I.N. Waterhouse, X. Qu, B. Yang & S. Lu. Carbon dots in bioimaging, bio-sensing and therapeutics: A comprehensive review. Small Science, 2(6), 2200012 (2022). https://doi.org/10.1002/smsc.202200012
27. Z.A. Qureshi, H. Dabash, D. Ponnamma & M.K.G. Abbas. Carbon dots as versatile nanomaterials in sensing and imaging: Efficiency and beyond. Heliyon, 10(11), e31634 (2024). https://doi.org/10.1016/j.heliyon.2024.e31634
28. H. Shabbir, E. Csapó & M. Wojnicki. Carbon quantum dots: The role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics, 11(6), 262 (2023). https://doi.org/10.3390/inorganics11060262
29. M. Jorns & D. Pappas. A review of fluorescent carbon dots, their synthesis, physical and chemical characteristics, and applications. Nanomaterials, 11(6), 1448 (2021). https://doi.org/10.3390/nano11061448
30. M. Ullah, U.A. Awan, H. Ali, A. Wahab, S.U. Khan, M. Naeem, M. Ruslin, A.Z. Mustopa & N. Hasan. Carbon dots: New rising stars in the carbon family for diagnosis and biomedical applications. Journal of Nanotheranostics, 6(1), 1 (2025). https://doi.org/10.3390/jnt6010001
31. D. Ozyurt, M.A. Kobaisi, R.K. Hocking & B. Fox. Properties, synthesis, and applications of carbon dots: A review. Carbon Trends, 12, 100276 (2023). https://doi.org/10.1016/j.cartre.2023.100276
32. H. Liu, X. Zhong, Q. Pan, Y. Zhang, W. Deng, G. Zou, H. Hou & X. Ji. A review of carbon dots in synthesis strategy. Coordination Chemistry Reviews, 498, 215468 (2024). https://doi.org/10.1016/j.ccr.2023.215468
33. B.D. Mansuriya & Z. Altintas. Carbon dots: Classification, properties, synthesis, characterization, and applications in health care—An updated review (2018–2021). Nanomaterials, 11(10), 2525 (2021). https://doi.org/10.3390/nano11102525
34. Q. He & L. Zhang. Design of carbon dots as nanozymes to mediate redox biological processes. Journal of Materials Chemistry B, 11, 5071–5082 (2023). https://doi.org/10.1039/d2tb02259a
35. H.H. Jing, F. Bardakci, S. Akgöl, K. Kusat, M. Adnan, M.J. Alam, R. Gupta, S. Sahreen, Y. Chen, S.C.B. Gopinath & S. Sasidharan. Green carbon dots: Synthesis, characterization, properties and biomedical applications. Journal of Functional Biomaterials, 14(1), 27 (2023). https://doi.org/10.3390/jfb14010027
36. A. Barhoum, A. Meftahi, M.S.K. Sabery, M.E.M. Heravi & F. Alem. A review on carbon dots as innovative materials for advancing biomedical applications: synthesis, opportunities, and challenges. Journal of Materials Science, 58, 13531–13579 (2023). https://doi.org/10.1007/s10853-023-08797-6
37. S. Mourdikoudis, R.M. Pallares & N.T.K. Thanh. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 12871–12934 (2018). https://doi.org/10.1039/c8nr02278j
38. S. Das, S. Mondal & D. Ghosh. Carbon quantum dots in bioimaging and biomedicines. Frontiers in Bioengineering and Biotechnology, 11, 1333752 (2024). https://doi.org/10.3389/fbioe.2023.1333752
39. P. Lesani, G. Singh, C.M. Viray, Y. Ramaswamy, D.M. Zhu, P. Kingshott, Z. Lu & H. Zreiqat. Two-photon dual-emissive carbon dot-based probe: Deep-tissue imaging and ultrasensitive sensing of intracellular ferric ions. ACS Applied Materials & Interfaces, 12(16), 18395–18406 (2020). https://doi.org/10.1021/acsami.0c05217
40. Y.-Y. Yao, G. Gedda, W.M. Girma, C.-L. Yen, Y.-C. Ling & J.-Y. Chang. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Applied Materials & Interfaces, 9(16), 13887–13899 (2017). https://doi.org/10.1021/acsami.7b01599
41. T. Vyas, S. Jaiswal, S. Choudhary, P. Kodgire & A. Joshi. Recombinant organophosphorus acid anhydrolase (OPAA) enzyme–carbon quantum dot (CQDs)–immobilized thin film biosensors for the specific detection of ethyl paraoxon and methyl paraoxon. Environmental Research, 243, 117855 (2024). https://doi.org/10.1016/j.envres.2023.117855
42. X. Bao, Y. Yuan, J. Chen, B. Zhang, D. Li, D. Zhou, et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Science & Applications, 7, 91 (2018). https://doi.org/10.1038/s41377-018-0090-1
43. W.B. Zhao, D.D. Chen, K.K. Liu, Y. Wang, R. Zhou, S.Y. Song, F.K. Li, L.Z. Sui, Q. Lou, L. Hou & C.X. Shan. Near-infrared I/II emission and absorption carbon dots via constructing localized excited/charge transfer state for multiphoton imaging and photothermal therapy. Chemical Engineering Journal, 452(Part 2), 139231 (2023). https://doi.org/10.1016/j.cej.2022.139231
44. K. Negi, N.K. Pathak, U. Tripathy, S.K. Dey & S.K. Sahu. Two-photon NIR-responsive carbon dots incorporated into NMOFs for targeted photodynamic therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 694, 134163 (2024). https://doi.org/10.1016/j.colsurfa.2024.134163
45. Z.M. Marković, M. Kovačova, P. Humpoliček, M.D. Budimir, J. Vajďák, P. Kubat, et al. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Photodiagnosis and Photodynamic Therapy, 26, 342–349 (2019). https://doi.org/10.1016/j.pdpdt.2019.04.019
46. G. Çamlik, I. Ozakca, B. Bilakaya, A.T. Ozcelikay, A.J. Velaro, S. Wasnik & I.T. Degim. Development of composite carbon quantum dots–insulin formulation for oral administration. Journal of Drug Delivery Science and Technology, 76, 103833 (2022). https://doi.org/10.1016/j.jddst.2022.103833
47. S. Samimi, M.S. Ardestani & F.A. Dorkoosh. Preparation of carbon quantum dots–quinic acid for drug delivery of gemcitabine to breast cancer cells. Journal of Drug Delivery Science and Technology, 61, 102287 (2021). https://doi.org/10.1016/j.jddst.2020.102287
48. H. Wang, Z. Song, J. Gu, S. Li, Y. Wu & H. Han. Nitrogen-doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection. ACS Biomaterials Science & Engineering, 5(9), 4739–4749 (2019). https://doi.org/10.1021/acsbiomaterials.9b00583
49. S.D. Hettiarachchi, R.M. Graham, K.J. Mintz, Y. Zhou, S. Vanni, Z. Peng & R.M. Leblanc. Triple conjugated carbon dots as a nanodrug delivery model for glioblastoma brain tumors. Nanoscale, 11(3), 6192–6205 (2019). https://doi.org/10.1039/c8nr08970a
50. P. Tiwari, R.P. Shukla, K. Yadav, N. Singh, D. Marwaha, S. Gautam, A.K. Bakshi, N. Rai, A. Kumar, D. Sharma & P.R. Mishra. Dacarbazine-primed carbon quantum dots coated with breast cancer cell-derived exosomes for improved breast cancer therapy. Journal of Controlled Release, 365, 43–59 (2023). https://doi.org/10.1016/j.jconrel.2023.11.005
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2026 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




