Publicado

2025-09-25

Popular Brazilian medicinal plants for therapeutic use in combating Diabetes

Plantas medicinales brasileñas populares para uso terapéutico en la diabetes

Plantas medicinais brasileiras populares, para o uso terapêutico na Diabetes

DOI:

https://doi.org/10.15446/rcciquifa.v54n3.120983

Palabras clave:

Brazilian plants, diabetes, Traditional medicine, alternative therapies (en)
Plantas brasileñas, diabetes, medicina tradicional, terapias alternativas (es)
Plantas brasileiras, diabetes, medicina tradicional, terapias alternativas (pt)

Descargas

Autores/as

Introduction: Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by persistent hyperglycemia. This condition is associated with a range of complications, including cardiovascular disease, nephropathy, and neuropathy, all of which arise due to the dysregulation of glucose and lipid metabolism. Plant-derived compounds have emerged as a promising source of novel therapeutic agents for the management of T2D. Their action dwells mainly in three key mechanisms: reduction of blood glucose levels, modulation of inflammation, and attenuation of lipid mobilization. Among the active constituents identified in various plant species, compounds such as terpenes, flavonoids, alkaloids, and phenolic acids have been recognized as important candidates for mitigating mechanisms that result in diabetic complications. However, many plant species, particularly those native to tropical regions such as Brazil, remain insufficiently studied, limiting the full exploration of their therapeutic potential. Objectives: This review highlights five Brazilian plant species that have demonstrated traditional use in the treatment of T2D: Sphagneticola trilobata (L.) Pruski Astereaceae, Salvia officinalis Linneaus Laminaceae, Myrcia sphaerocarpa DC Myrtaceae, Eugenia jambolana Lam., Myrtaceae, and Bauhinia forficata Link Fabaceae, as well as the compounds that might be responsible for their beneficial effects. Conclusion: Traditional Brazilian medicinal plants have been shown to exhibit a hypoglycemic effect, as well as increased insulin sensitivity, in tested animal models. Its low cost makes it an interesting research topic for Diabetes treatment.

Introducción: La diabetes tipo 2 (DT2) es un trastorno metabólico crónico caracterizado por hiperglucemia persistente. Esta afección se asocia con diversas complicaciones, como enfermedades cardiovasculares, nefropatía y neuropatía, afecciones que surgen debido a la desregulación del metabolismo de la glucosa y los lípidos. Se ha demostrado que los compuestos derivados de plantas constituyen una fuente prometedora de nuevos agentes terapéuticos para el tratamiento de la DT2. Estos compuestos actúan mediante tres mecanismos principales: reducción de la glucemia, modulación de la inflamación y atenuación de la movilización de lípidos. Los componentes caracterizados pertenecen a las clases de flavonoides, alcaloides y ácidos fenólicos, y son candidatos potenciales para el tratamiento de las complicaciones de la diabetes. Sin embargo, varias especies de plantas, en particular las nativas de regiones tropicales como Brasil, han sido poco estudiadas. Objetivos: Esta revisión destaca cinco especies de plantas brasileñas de uso tradicional en el tratamiento de la diabetes tipo 2: Sphagneticola trilobata (L.) Pruski Astereaceae, Salvia officinalis Linneaus Laminaceae, Myrcia sphaerocarpa DC Myrtaceae, Eugenia jambolana Lam., Myrtaceae y Bauhinia forficata Link Fabaceae, así como sus componentes que podrían ser responsables del beneficio terapéutico. Conclusión: Las plantas tradicionales brasileñas mostraron un efecto hipoglucemiante y un aumento de la sensibilidad a la insulina en modelos animales evaluados. Se requieren más estudios para explorar el potencial terapéutico de estas plantas, principalmente por su bajo costo.

Diabetes tipo 2 (DT2) é um distúrbio metabólico crônico caracterizado por hiperglicemia persistente. Essa condição éassociada com uma variedade de complicações, incluindo doenças cardiovasculares, nefropatia, e neuropatia, condições que surgem por conta da desrregulação da glicose e do metabolismo lipídico. Compostos derivados de plantas têm são uma fonte promissora de novos agentes terapêuticos para o tratamento da DT2. Estes compostos atuam em 3 mecanismos principais: redução da glicemia, modulação da inflamação e atenuação da mobilização lipídica. Os componentes caracterizados são pertencentes das classes de flavonoides, alcaloides e ácidos fenólicos, são potenciais candidatos para o tratamento das compliações da diabetes. No entanto, várias espécies de plantas, particularmente nativas de regiões tropicais como o Brasil, são pouco estudadas. Objetivos: Essa revisão destaca cinco espécies de plantas brasileiras que possuem uso tradicional no tratamento da DT2: Sphagneticola trilobata (L.) Pruski Astereaceae, Salvia officinalis Linneaus Laminaceae, Myrcia sphaerocarpa DC Myrtaceae, Eugenia jambolana Lam., Myrtaceae e Bauhinia forficata Link Fabaceae, assim como seus components que podem ser responsáveis pelo benefício terapêutico. Conclusão: Plantas tradicionais brasileiras mostraram um efeito hipoglicêmico e um aumento da sensibilidade da insulina, em modelos animais testados. Mais estudos são essenciais para explorar o potencial terapêutico destas plantas, principalmente por possuírem um baixo custo.

Referencias

1. M. Laakso. Biomarkers for Type 2 Diabetes. Mol. Metab., 27, S139–S146 (2019). Doi: https://doi.org/10.1016/j.molmet.2019.06.016

2. G.M. Samgir, G.A. Gaikwad & P. Yewale. Costus Ignus: Insulin plant and it’s preparations as remedial approach for diabetes mellitus. Int. J. Pharm. Sci., 2(7), 976–983 (2024). URL: https://www.ijpsjournal.com/assetsbackoffice/uploads/article/Costus+Ignus+Insu-lin+Plant+And+Its+Preparations+As+Remedial+Approach+For+Diabetes+Mellitus.pdf

3. X. Chen, D. Zhang, Y. Li, W. Wang, W. Bei & J. Guo. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe? Pharmacol. Res., 173, 105885 (2021). Doi: https://doi.org/10.1016/j.phrs.2021.105885

4. A. Singh, R. Kukreti, L. Saso & S. KukretiS. Pathways and type 2 diabetes. Molecules, 27(3), 950 (2022). Doi: https://doi.org/10.3390/molecules27030950

5. X. Lu, Q. Xie, X. Pan, R. Zhang, X. Zhang, G. Peng, Y. Zhang, S. Shen & N. Tong. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy. Signal Transduct. Target. Ther., 9(1), 262 (2024). Doi: https://doi.org/10.1038/s41392-024-01951-9

6. J.B. Meigs. The genetic epidemiology of type 2 diabetes: Opportunities for health translation. Curr. Diab. Rep., 19(8), 62 (2019). Doi: https://doi.org/10.1007/s11892-019-1173-y

7. Brasil. Ministério da Saúde. Cadernos de Atenção Básica - Práticas Integrativas e Complementares: Plantas Medicinais e Fitoterapia Na Atenção Básica. Brasília (DF), 2012; 154 p. URL: https://www.gov.br/saude/pt-br/composicao/saps/pics/publicacoes/cab-pics/view

8. J. Lee, S. Noh, S. Lim & B. Kim. Plant extracts for type 2 diabetes: From traditional medicine to modern drug discovery. Antioxidants, 10(1), 81 (2021). Doi: https://doi.org/10.3390/antiox10010081

9. C.M. Carvalho-Lopes, S.M.R.R. Lima, E.C. de Arruda-Veiga, J.M. Soares-Jr & E.C. Baracat. Phytotherapeutic medicines: Reality or myth? Rev. Assoc. Med. Bras., 65(3), 292–294 (2019). Doi: https://doi.org/10.1590/1806-9282.65.3.292

10. C.C. Falzon & A. Balabanova. Phytotherapy: An introduction to herbal medicine. Prim. Care: Clin. Off. Pract., 44(2), 217–227 (2017). Doi: https://doi.org/10.1016/j.pop.2017.02.001

11. V.P. Lawane, R. Dipti & P.H. Chaudhary. A comprehensive review on Sphagneticola trilobatal. International Journal of Pharmaceutical Research and Applications, 9(2), 1378–1389 (2024). URL: https://www.researchgate.net/publication/379993013_A_Comprehensive_Review_on_Sphagneticola_Trilobatal

12. K. Lang, J. Corrêa, F. Wolff, G.F. da Silva, A. Malheiros, V.C. Filho, et al. Biomonitored UHPLC-ESI-QTOF-MS2 and HPLC-UV thermostability study of the aerial parts of Sphagneticola trilobata (L.) Pruski, Asteraceae. Talanta, 167, 302–309 (2017). Doi: https://doi.org/10.1016/j.talanta.2017.02.024

13. C.A. Araújo, C.S.A. Morgado, A.K.C. Gomes, A.C.C. Gomes & N.K. Simas. Asteraceae family: A review of its allelopathic potential and the case of Acmella oleracea and Sphagneticola trilobata. Rodriguésia, 72, e01622020 (2021). Doi: https://doi.org/10.1590/2175-7860202172137

14. N. Balekar, T. Nakpheng & T. Srichana. Wedelia trilobata L.: A phytochemical and pharmacological review. Chiang Mai J. Sci., 41(3), 590–605 (2014). URL: https://www.thaiscience.info/journals/Article/CMJS/10932829.pdf

15. A.G.B. Leite, E.T.N. Farias, A.P. de Oliveira, R.E.F. de Abreu, M.M. da Costa, J.R.G. Almeida, et al. Phytochemical screening and antimicrobial activity testing of crude hydroalcoholic extract from leaves of Sphagneticola trilobata (Asteraceae). Cienc. Rural (Santa Maria), 49(4), e20180639 (2019). Doi: https://doi.org/10.1590/0103-8478cr20180639

16. M.T. Ali, D.A. Al-Mahdy, A.M.E. Fishawy & A.M. Otify. Sphagneticola trilobata (L.) Pruski: An updated exploration of its traditional applications, taxonomy, phytochemical profile and pharmacological properties. South African J. Bot., 174, 183–207 (2024). Doi: https://doi.org/10.1016/j.sajb.2024.08.060

17. S. Labhade, S. Jain, S. Chitlange & S. Sharma. LC/MS characterization of secondary metabolites of Sphagneticola trilobata J. F Pruski leaves. Journal of Pharmaceutical Negative Results, 14(3), 1278–1283 (2023). Doi: https://doi.org/10.47750/pnr.2023.14.03.171

18. A. Balkrishna, R. Shankar, V. Arya, L. Mohammad, A. Kumar, H. Sharma, et al. Medicinal plants from Gangetic plains of West Bengal and Yoga for the management of lifestyle diseases. Plants J., 12(2), 11–18 (2024). Doi: https://doi.org/10.22271/plants.2024.v12.i2a.1648

19. A. Ghosh, S. Das, K. Jana, B. Debnath, J. Das & S. Mondal. The power of nature in managing diabetes: A database of ethno indigenous plants in India. J. Nat. Remedies, 24(3), 475–521 (2024). Doi: https://doi.org/10.18311/jnr/2024/33431

20. M. Trojan-Rodrigues, T.L.S. Alves, G.L.G. Soares & M.R. Ritter. Plants used as antidiabetics in popular medicine in Rio Grande Do Sul, southern Brazil. J. Ethnopharmacol., 139(1), 155–163 (2012). Doi: https://doi.org/10.1016/j.jep.2011.10.034

21. A.P. Schmitz, P. Weimer, A.M. Weschenfelder, A.W. Hansen, R.W. Maluf, R.C. Rossi, et al. In vitro cytotoxic and genotoxic effects of Cissus verticillata and Sphagneticola trilobata used for treatment of diabetes mellitus in Brazilian folk medicine. Acta Scientiarum - Biol. Sci., 43, e56549 (2021). Doi: https://doi.org/10.4025/actascibiolsci.v43i1.56549

22. A.M. Feijó, M.E.N. Bueno, T. Ceolin, C.L. Linck, E. Schwartz, C. Lange, et al. Plantas medicinais utilizadas por idosos com diagnóstico de diabetes mellitus no tratamento dos sintomas da doença. Rev. Bras. Plantas Med., 14(1), 50–56 (2012). Doi: https://doi.org/10.1590/S1516-05722012000100008

23. M.A.M. Lemões, M. Jacondino, T. Ceolin, R.M. Heck, R.L. Brabieri & R.A Machado. The use of the plant Sphagneticola trilobata farmers affected by diabetes mellitus. Rev. Pesq.: Cuid. Fundam. Online, 6(2), 776–784 (2012). URL: https://seer.unirio.br/cuidadofundamental/article/view/1592/pdf_485

24. N. Buddhakala & C. Talubmook. Toxicity and antidiabetic activity of ethanolic extract of Sphagneticola trilobata (L.) Pruski flower in rats. J. Ethnopharmacol., 262, 113128 (2020). Doi: https://doi.org/10.1016/j.jep.2020.113128

25. M.R. Faisal, N.W.O. Amanda, D.A. Mursidah, D. Mahdiyah & B.H. Mukti. Antidiabetic potential screening of ulin fruit extract (Eusideroxylon Zwageri) against streptozotocin-induced diabetic rats. Indones. J. Pharm. Sci. Technol., 1(1), 1–8 (2022). Doi: https://doi.org/10.24198/ijpst.v1i1.36621

26. N. Villa-Ruano, E. Lozoya-Gloria & Y. Pacheco-Hernández. Kaurenoic acid: A diterpene with a wide range of biological activities. Stud. Nat. Prod. Chem., 51, 151–174 (2016). Doi: https://doi.org/10.1016/B978-0-444-63932-5.00003-6

27. I.J. Kade, N.B.V. Barbosa, E.O. Ibukun, A.P. Igbakin, C.W. Nogueira & J.B.T. Rocha. Aqueous extracts of Sphagneticola trilobata attenuates streptozotocin-induced hyperglycaemia in rat models by modulating oxidative stress parameters. Biol. Med., 2(3), 1–13 (2010). URL: https://www.researchgate.net/publication/286266434_Aqueous_extracts_of_Sphagneticola_trilobata_attenuates_streptozotocin-induced_hyperglycaemia_in_rat_models_by_modulating_oxidative_stress_parameters

28. L. Gong, D. Feng, T. Wang, Y. Ren, Y. Liu & J. Wang. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr., 8(12), 6320–6337 (2020). Doi: https://doi.org/10.1002/fsn3.1987

29. H. Kashtoh & K.-H. Baek. New insights into the latest advancement in α-amylase. Plants, 12(16), 2944 (2023). Doi: https://doi.org/10.3390/plants12162944

30. N. Kaur, V. Kumar, S.K. Nayak, P. Wadhwa, P. Kaur & S.K. Sahu. Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem. Biol. Drug Des., 98(4), 539–560 (2021). Doi: https://doi.org/10.1111/cbdd.13909

31. T.-P. Lam, N.-V.N. Tran, L.-H.D. Pham, N.V.-T. Lai, B.-T.N. Dang, N.-L.N. Truong, et al. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: A systematic review of in vitro studies. Nat. Products Bioprospect., 14(1), 4 (2024). Doi: https://doi.org/10.1007/s13659-023-00424-w

32. R. Tundis, M.R. Loizzo & F. Menichini. Natural products as -amylase and -glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini-Rev. Med. Chem., 10(4), 315–331 (2010). Doi: https://doi.org/10.2174/138955710791331007

33. N.T. Luyen, P.T. Binh, P.T. Tham, T.M. Hung, N.H. Dang, N.T. Dat & N.P. Thao. Wedtrilosides A and B, two new diterpenoid glycosides from the leaves of Wedelia trilobata (L.) Hitchc. with α-amylase and α-glucosidase inhibitory activities. Bioorg. Chem., 85, 319–324 (2019). Doi: https://doi.org/10.1016/j.bioorg.2019.01.010

34. A.S. Ponath, D.R. Volz, E.S. Suyenaga, A.L. Ziulkoski & M.S. Perassolo. Assessment of potential in vitro toxicity of Cissus sicyoides L. and Wedelia paludosa DC. leaves water extracts. Toxicol. Res. (Camb), 11(5), 881–890 (2022). Doi: https://doi.org/10.1093/toxres/tfac066

35. S. Kurapati, R.K. Pallapatti, S. Kanikaram & H.B. Bollikolla. A quantitative estimation of phytochemicals, anti-diabetic and anti-oxidant activities of crude extracts of Sphagneticola trilobata (L.) and Adathoda vasica Linn., Journal of Natural Products and Resources, 4(1), 155–159 (2018). Doi: https://doi.org/10.30799/jnpr.054.18040101

36. J. Chethan, P.M. Pradeep-Kumar & H.S. Prakash. Antidiabetic and antihypertensive potential of selected Asteraceae plant species. Am. J. Adv. Drug Deliv., 2–3, 355–363 (2014). URL: https://www.primescholars.com/articles/antidiabetic-and-antihypertensive-potential-of-selected-asteraceae-plant-species.pdf

37. J. Jia, L. Bai, Y. Chen & B. Liu. Inhibitory mechanism of Camellianin A against α-glucosidase: In vitro and molecular simulation studies. Foods, 13(17), 2835 (2024). Doi: https://doi.org/10.3390/foods13172835

38. L. Chen, S. Fei & O.J. Olatunji. LC/ESI/TOF-MS characterization, anxiolytic and antidepressant-like effects of Mitragyna speciosa Korth extract in diabetic rats. Molecules, 27(7), 2208 (2022). Doi: https://doi.org/10.3390/molecules27072208

39. J. Nopparat, A. Nualla-Ong & A. Phongdara. Ethanolic extracts of Pluchea indica (L.) leaf pretreatment attenuates cytokine-induced β-cell apoptosis in multiple low-dose streptozotocin-induced diabetic mice. PLoS One, 14(2), e0212133 (2019). Doi: https://doi.org/10.1371/journal.pone.0212133

40. R.M. Pérez-Gutiérrez & A. Muñiz-Ramirez. Hypoglycemic effects of sesquiterpene lactones from Byrsonima crassifolia. Food Sci. Biotechnol., 25(4), 1135–1145 (2016). Doi: https://doi.org/10.1007/s10068-016-0182-8

41. J. Xu, Z. Wang, L. Sun, Y. Wang, Y. Wang & X. He. (3α)-3-(Tiglinoyloxy)-ent-kaur-16-en-19-oic acid, isolated from Wedelia trilobata L., exerts an anti-inflammatory effect via the modulation of NF-ΚB, MAPK and MTOR pathway and autophagy in LPS-stimulated macrophages. Toxicology in vitro, 73, 105139 (2021). Doi: https://doi.org/10.1016/j.tiv.2021.105139

42. R. Wang, J. Zeng, L. Chen, L. Sun, Y. Wang, J. Xu & X. He. Diterpenoid WT-29 isolated from Wedelia exerted anti-inflammatory and anti-allergic activities. J. Ethnopharmacol., 319(Part 2), 117265 (2024). Doi: https://doi.org/10.1016/j.jep.2023.117265

43. M. Govindappa, S. Naga-Sravya, M.N. Poojashri, T.S. Sadananda, C.P. Chandrappa, G. Santoyo, et al. Antimicrobial, antioxidant and in vitro anti-inflammatory activity and phytochemical screening of water extract of Wedelia trilobata (L.) Hitchc. J. Med. Plant Res., 5(24), 5718–5729 (2011). URL: https://academicjournals.org/article/article1381318404_Govindappa%20et%20al.pdf

44. A. Shedoeva, D. Leavesley, Z. Upton & C. Fan. Wound healing and the use of medicinal plants. Evidence-based Complement. Altern. Med., 2019, 684108 (2019). Doi: https://doi.org/10.1155/2019/2684108

45. M. Jug-Dujaković, M. Ristić, D. Pljevljakušić, Z. Dajić-Stevanović, Z. Liber, K. Hančević, et al. High diversity of indigenous populations of Dalmatian sage (Salvia officinalis L.) in essential-oil composition. Chem. Biodivers., 9(10), 2309–2323 (2012). Doi: https://doi.org/10.1002/cbdv.201200131

46. M. Mohammadhosseini. Chemical composition of the volatile fractions from flowers, leaves and stems of Salvia mirzayanii by HS-SPME-GC-MS. J. Essent. Oil-Bearing Plants, 18(2), 464–476 (2015). Doi: https://doi.org/10.1080/0972060X.2014.1001185

47. A. Ghorbani & M. Esmaeilizadeh. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med., 7(4), 433–440 (2017). Doi: https://doi.org/10.1016/j.jtcme.2016.12.014

48. A. Porte, R.L.O. Godoy & L.H. Maia-Porte. Chemical composition of Sage (Salvia officinalis L.) essential oil from the Rio de Janeiro State (Brazil). Rev. Bras. Pl. Med. (Campinas), 15(3), 438–441 (2013). Doi: https://doi.org/10.1590/s1516-05722013000300018

49. Z. Jažo, M. Glumac, V. Paštar, S. Bektić, M. Radan & I. Carev. Chemical composition and biological activity of Salvia officinalis L. essential oil. Plants, 12(9), 1794 (2023). Doi: https://doi.org/10.3390/plants12091794

50. S. Maache, L. Zbadi, A. El-Ghouizi, N. Soulo, H. Saghrouchni, F. Siddique, et al. Antioxidant and antimicrobial effects of essential oils from two salvia species with in vitro and in silico analysis targeting 1AJ6 and 1R4U proteins. Sci. Rep., 13(1), 14038 (2023). Doi: https://doi.org/10.1038/s41598-023-41178-2

51. G. Zhumaliyeva, A. Zhussupova, G.E. Zhusupova, E. Błońska-Sikora, A. Cerreto, N. Omirbekova, et al. Natural compounds of Salvia L. genus and molecular mechanism of their biological activity. Biomedicines, 11(12), 3151 (2023). Doi: https://doi.org/10.3390/biomedicines11123151

52. C.F. Lima, P.C.R. Valentao, P.B. Andrade, R.M. Seabra, M. Fernandes-Ferreira & C. Pereira-Wilson. Water and methanolic extracts of Salvia officinalis protect HepG2 cells from T-BHP induced oxidative damage. Chem.-Biol. Interact., 167(2), 107–115 (2007). Doi: https://doi.org/10.1016/j.cbi.2007.01.020

53. M.S. Abu-Darwish, C. Cabral, I.V. Ferreira, M.J. Gonçalves, C. Cavaleiro, M.T. Cruz, T.H. Al-Bdour & L. Salgueiro. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. BioMed Res. Int., 2013, 538940 (2013). Doi: https://doi.org/10.1155/2013/538940

54. R. Kadhim, N.H. Ali & D. Aziz-Ibrahim. Enzymatic effectiveness of alcoholic and aqueous extract of Salvia officinalis in mice poisoned with tetrachloride. Arch. Razi Inst., 76(6), 1777–1786 (2021). Doi: https://doi.org/10.22092/ARI.2021.356239.1812

55. A.N.A. Abad, M.H.K. Nouri & F. Tavakkoli. Effect of Salvia officinalis hydroalcoholic extract on vincristine-induced neuropathy in mice. Chin. J. Nat. Med., 9(5), 354–358 (2011). Doi: https://doi.org/10.3724/SP.J.1009.2011.00354

56. B.F. Zimmermann, S.G. Walch, L.N. Tinzoh, W. Stühlinger & D.W. Lachenmeier. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (Sage tea). J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 879(24), 2459–2464 (2011). Doi: https://doi.org/10.1016/j.jchromb.2011.06.038

57. C.F. Lima, P.B. Andrade, R.M. Seabra, M. Fernandes-Ferreira & C. Pereira-Wilson. The drinking of a Salvia officinalis infusion improves liver antioxidant status in mice and rats. J. Ethnopharmacol., 97(2), 383–389 (2005). Doi: https://doi.org/10.1016/j.jep.2004.11.029

58. D. Hernández-Saavedra, I.F. Pérez-Ramírez, M. Ramos-Gómez, S. Mendoza-Díaz, G. Loarca-Piña & R. Reynoso-Camacho. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med. Chem. Res., 25(1), 163–172 (2016). Doi: https://doi.org/10.1007/s00044-015-1454-1

59. K.B. Christensen, M. Jørgensen, D. Kotowska, R.K. Petersen, K. Kristiansen & L.P. Christensen. Activation of the nuclear receptor PPARγ by metabolites isolated from sage (Salvia officinalis L.). J. Ethnopharmacol., 132(1), 127–133 (2010). Doi: https://doi.org/10.1016/j.jep.2010.07.054

60. S. Mahdi, R. Azzi & F.B. Lahfa. Evaluation of in vitro α-amylase and α-glucosidase inhibitory potential and hemolytic effect of phenolic enriched fractions of the aerial part of Salvia officinalis L. Diabetes Metab. Syndr. Clin. Res. Rev., 14(4), 689–694 (2020). Doi: https://doi.org/10.1016/j.dsx.2020.05.002

61. U.K. Kolac, M.C. Ustuner, N. Tekin, D. Ustuner, E. Colak & E. Entok. The anti-inflammatory and antioxidant effects of Salvia officinalis on lipopolysaccharide-induced inflammation in rats. J. Med. Food, 20(12), 1193–1200 (2017). Doi: https://doi.org/10.1089/jmf.2017.0035

62. S. Behradmanesh, F. Derees & M. Rafieian-Kopaei. Effect of Salvia officinalis on diabetic patients. J. Renal Inj. Prev., 2(2), 51–54 (2013). Doi: https://doi.org/10.12861/jrip.2013.18

63. A.A. Rashed & D.-N.G. Rathi. Bioactive components of Salvia and their potential antidiabetic properties: A review. Molecules, 26(10), 3042 (2021). Doi: https://doi.org/10.3390/molecules26103042

64. D.A. Alsherif, M.A. Hussein & S.S. Abuelkasem. Salvia officinalis improves glycemia and suppresses pro-inflammatory features in obese rats with metabolic syndrome. Curr. Pharm. Biotechnol., 25(5), 390–399 (2023). Doi: https://doi.org/10.2174/1389201024666230811104740

65. S. Kianbakht & F.H. Dabaghian. Improved glycemic control and lipid profile in hyperlipidemic type 2 diabetic patients consuming Salvia officinalis L. leaf extract: a randomized placebo. Controlled clinical trial. Complement. Therap. Med., 21(5), 441–446 (2013). Doi: https://doi.org/10.1016/j.ctim.2013.07.004

66. S. Kianbakht, F. Nabati & B. Abasi. Salvia officinalis (Sage) leaf extract as add-on to statin therapy in hypercholesterolemic type 2 diabetic patients: A randomized clinical trial. Int. J. Mol. Cell. Med., 5(3), 141–148 (2016). URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC5125366/

67. C. Liu, W. Wang & J. Gu. Targeting ferroptosis: New perspectives of Chinese herbal medicine in the treatment of diabetes and its complications. Heliyon, 9(12), e22250 (2023). Doi: https://doi.org/10.1016/j.heliyon.2023.e22250

68. C. Ulbricht. Focus: Diabetes. J. Diet. Suppl., 8(3), 239–256 (2011). Doi: https://doi.org/10.3109/19390211.2011.597975

69. M. Machado-Pereira & G.D. Piovezana-Bossolani. O uso de flavonoides no tratamento do diabetes mellitus tipo 2. RevisSAJES: Revista Saúde Viva Multidisciplinar da AJES, 3(4), jul/dez (2020). URL: https://revista.ajes.edu.br/revistas-noroeste/index.php/revisajes/article/view/25

70. M. Figueiredo-González, C. Grosso, P. Valentão & P.B. Andrade. α-Glucosidase and α-amylase inhibitors from Myrcia Spp.: A stronger alternative to acarbose? J. Pharm. Biomed. Anal., 118, 322–327 (2016). Doi: https://doi.org/10.1016/j.jpba.2015.10.042

71. M.M. Cascaes, G.M.S.P. Guilhon, E.H. de Aguiar-Andrade, M.d.G. Bichara-Zoghbi & L. da Silva-Santos. Constituents and pharmacological activities of Myrcia (Myrtaceae): A review of an aromatic and medicinal group of plants. Int. J. Mol. Sci., 16(10), 23881–23904 (2015). Doi: https://doi.org/10.3390/ijms161023881

72. J. Vinholes & M. Vizzotto. Synergisms in alpha-glucosidase inhibition and antioxidant activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. ethanolic extracts. Pharmacog. Res., 9(1), 101–107 (2017). Doi: https://doi.org/10.4103/0974-8490.197797

73. S.A. Tucci, E.J. Boyland & J.C.G. Halford. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: A review of current and emerging therapeutic agents. Diabetes, Metab. Syndr. Obes. Targets Ther., 3, 125–143 (2010). Doi: https://doi.org/10.2147/dmso.s7005

74. W. Guo, J. Yun, B. Wang, S. Xu, C. Ye, X. Wang, et al. Comparative study on physicochemical properties and hypoglycemic activities of intracellular and extracellular polysaccharides from submerged fermentation of Morchella esculenta. Int. J. Biol. Macromol., 278(Part 2), 134759 (2024). Doi: https://doi.org/10.1016/j.ijbiomac.2024.134759

75. A.R. de Oliveira & C.A. Pereira. Inhibition of alpha-amylase by “insulin plant” (Myrcia sphaerocarpa DC) extracts: An alternative for the treatment of diabetes mellitus? J. Appl. Pharm. Sci., 5(5), 89–93 (2015). Doi: https://doi.org/10.7324/JAPS.2015.50517

76. E.S.C. Oliveira, L.D.R. Acho, R.D. Morales-Gamba, A.S. do Rosário, J.F.M. Barcellos, E.S. Lima & M.B. Machado. Hypoglycemic effect of the dry leaf extract of Myrcia multiflora in streptozotocin-induced diabetic mice. J. Ethnopharmacol., 307, 116241 (2023). Doi: https://doi.org/10.1016/j.jep.2023.116241

77. E.A. Ferreira, E.F. Gris, J.M. Rebello, J.F.G. Correia, L.F.S. de Oliveira, D. Filho & R.C. Pedrosa. The 2′,4′,6′-trihydroxyacetophenone isolated from Myrcia multiflora has antiobesity and mixed hypolipidemic effects with the reduction of lipid intestinal absorption. Planta Med., 77(14), 1569–1574 (2011). Doi: https://doi.org/10.1055/s-0030-1270956

78. E.A. Ferreira, E.F. Gris, K.B. Felipe, J.F.G. Correia, E. Cargnin-Ferreira, D.W. Filho & R.C. Pedrosa. Potent hepatoprotective effect in CCl4-induced hepatic injury in mice of phloroacetophenone from Myrcia multiflora. Libyan J. Med., 5(1), 4891 (2010). Doi: https://doi.org/10.3402/ljm.v5i0.4891

79. M.S. Baliga, H.P. Bhat, B.R.V. Baliga, R. Wilson & P.L. Palatty. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): A review. Food Res. Int., 44(7), 1776–1789 (2011). Doi: https://doi.org/10.1016/j.foodres.2011.02.007

80. D.K. Paul & R.K. Shaha. Nutrients, vitamins and minerals content in common citrus fruits in the northern region of Bangladesh. Pakistan J. Biol. Sci., 7(2), 238–242 (2004). Doi: https://doi.org/10.3923/pjbs.2004.238.242

81. C.E. Sobral de Souza, A.R. Pereira da Silva, J.E. Rocha, M.C. Vega-Gomez, M. Rolóm, C. Coronel, et al. LC–MS characterization, anti-kinetoplastide and cytotoxic activities of natural products from Eugenia jambolana Lam. and Eugenia uniflora. Asian Pac. J. Trop. Biomed., 7(9), 836–841 (2017). Doi: https://doi.org/10.1016/j.apjtb.2017.08.007

82. A. Sharma, V.K. Patel & A.N. Chaturvedi. Vibriocidal activity of certain medicinal plants used in Indian folklore medicine by tribals of Mahakoshal region of central India. Indian J. Pharmacol., 41(3), 129–133 (2009). Doi: https://doi.org/10.4103/0253-7613.55212

83. J.P. Singh, A. Kaur, N. Singh, L. Nim, K. Shevkani, H. Kaur & D.S. Arora. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT, 65, 1025–1030 (2016). Doi: https://doi.org/10.1016/j.lwt.2015.09.038

84. P.M. Shafi, M.K. Rosamma, K. Jamil & P.S. Reddy. Antibacterial activity of Syzygium cumini and Syzygium travancoricum leaf essential oils. Fitoterapia, 73(5), 414–416 (2002). Doi: https://doi.org/10.1016/S0367-326X(02)00131-4

85. J.M. Veigas, M.S. Narayan, P.M. Laxman & B. Neelwarne. Chemical nature, stability and bioefficacies of anthocyanins from fruit peel of Syzygium cumini Skeels. Food Chem., 105(2), 619–627 (2007). Doi: https://doi.org/10.1016/j.foodchem.2007.04.022

86. M.C. Lingaraju, S. Anand, J. Begum, V. Balaganur, R.R. Kumari, R.A. Bhat, et al. Anti-inflammatory effect of dikaempferol rhamnopyranoside, a diflavonoid from Eugenia jambolana Lam. leaves. Indian J. Exp. Biol., 54(12), 801–807 (2016). URL: https://core.ac.uk/download/pdf/297984373.pdf

87. M.C. Lingaraju, S. Anand, V. Balaganur, R.R. Kumari, A.S. More, D. Kumar, B.K. Bhadoria & S.K. Tandan. Analgesic activity of Eugenia jambolana leave constituent: A dikaempferol rhamnopyranoside from ethyl acetate soluble fraction. Pharm. Biol., 52(8), 1069–1078 (2014). Doi: https://doi.org/10.3109/13880209.2014.885060

88. J. Xu, T. Liu, Y. Li, W. Liu, Z. Ding, H. Ma, et al. Jamun (Eugenia jambolana Lam.) fruit extract prevents obesity by modulating the gut microbiome in high-fat-diet-fed mice. Mol. Nutr. Food Res., 63(9), 1801307 (2019). Doi: https://doi.org/10.1002/mnfr.201801307

89. S.S. Sisodia & M. Bhatnagar. Hepatoprotective activity of Eugenia jambolana Lam. in carbon tetrachloride treated rats. Indian J. Pharmacol., 41(1), 23–27 (2009). Doi: https://doi.org/10.4103/0253-7613.48888

90. S.B. Sharma, A. Nasir, K.M. Prabhu & P.S. Murthy. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J. Ethnopharmacol., 104(3), 367–373 (2006). Doi: https://doi.org/10.1016/j.jep.2005.10.033

91. K. Ravi, B. Ramachandran & S. Subramanian. Effect of Eugenia jambolana seed kernel on antioxidant defense system in streptozotocin-induced diabetes in rats. Life Sci., 75(22), 2717–2731 (2004). Doi: https://doi.org/10.1016/j.lfs.2004.08.005

92. S. Saha, E.V.S. Subrahmanyam, C. Kodangala, S.C. Mandal & S.C. Shastry. Evaluation of antinociceptive and anti-inflammatory activities of extract and fractions of Eugenia jambolana root bark and isolation of phytoconstituents. Rev. Bras. Farmacogn., 23(4), 651–661 (2013). Doi: https://doi.org/10.1590/S0102-695X2013005000055

93. R.E. Silva-López & B.C. Santos. Bauhinia forficata Link (Fabaceae). Revista Fitos (Rio de Janeiro), 9(3), 217–232 (2015). Doi: https://doi.org/10.5935/2446-4775.20150018

94. T.S.D.B. Pinheiro, L.A.P. Johansson, M.G. Pizzolatti & M.W. Biavatti. Comparative assessment of kaempferitrin from medicinal extracts of Bauhinia forficata Link. J. Pharm. Biomed. Anal., 41(2), 431–436 (2006). Doi: https://doi.org/10.1016/j.jpba.2005.12.010

95. N.M. Khalil, M.T. Pepato & I.L. Brunetti. Free radical scavenging profile and myeloperoxidase inhibition of extracts from antidiabetic plants: Bauhinia forficata and Cissus sicyoides. Biol. Res., 41(2), 165–171 (2008). Doi: https://doi.org/10.4067/S0716-97602008000200006

96. R.R. Franco, V.H. Mota-Alves, L.F. Ribeiro-Zabisky, A.B. Justino, M.M. Martins, et al. Antidiabetic potential of Bauhinia forficata Link leaves: A non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomed. Pharmacother., 123, 109798 (2020). Doi: https://doi.org/10.1016/j.biopha.2019.109798

97. E.A. Chávez-Bustos, A. Morales-González, L. Anguiano-Robledo, O.E. Madrigal-Santillán, C. Valadez-Vega, O. Lugo-Magaña, et al. Bauhinia forficata Link, antioxidant, genoprotective, and hypoglycemic activity in a murine model. Plants, 11(12), 3052 (20229. Doi: https://doi.org/10.3390/plants11223052

98. P. Gasparini, I.C. Garofolo, M. Marques-Telles, L.M. Oyama, V. de Mello-Veneza, T.A. Moura-Veiga, et al. Bauhinia forficata Link extract attenuates insulin resistance by preserving glucose uptake in gastrocnemius muscle. Nat. Prod. Res., 37(12), 2031–2036 (2023). Doi: https://doi.org/10.1080/14786419.2022.2113875

99. P.A. Palsikowski. Avaliação de métodos de extração de compostos bioativos das folhas de pata de vaca (Bau-hinia forficata subespécie pruinosa). Ph.D. thesis. Universidade Estadual do Oeste do Paraná (Unioeste). Toledo, PR, 2020; 175 p. URL: https://tede.unioeste.br/bitstream/tede/4880/2/Paula_Palsikowski_2020.pdf

100. E.P. Jung, B.P. de Freitas, C.N. Kunigami, D.d.L. Moreira, N.G. de Figueiredo, L.d.O. Ribeiro & R.F.A. Moreira. Bauhinia forficata Link infusions: Chemical and bioactivity of volatile and non-volatile fractions. Molecules, 27(17), 5415 (2022). Doi: https://doi.org/10.3390/molecules27175415

101. A.C.F. Salgueiro, C.Q. Leal, M.C. Bianchini, I.O. Prado, A.S.L. Mendez, R.L. Puntel, et al. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations. J. Ethnopharmacol., 148(1), 81–87 (2013). Doi: https://doi.org/10.1016/j.jep.2013.03.070

102. R.R. Franco, D. da Silva-Carvalho, F.B.R. de Moura, A.B. Justino, H.C.G. Silva, L.G. Peixoto & F.S. Espindola. Antioxidant and anti-glycation capacities of some medicinal plants and their potential inhibitory against digestive enzymes related to type 2 diabetes mellitus. J. Ethnopharmacol., 215, 140–146 (2018). Doi: https://doi.org/10.1016/j.jep.2017.12.032

103. C.A. Tonelli, S.Q. de Oliveira, A.A. de Silva-Vieira, M.W. Biavatti, C. Ritter, F.H. Reginatto, A.M. de Campos & F. Dal-Pizzol. Clinical efficacy of capsules containing standardized extract of Bauhinia forficata Link (pata-de-vaca) as adjuvant treatment in type 2 diabetes patients: A randomized, double blind clinical trial. J. Ethnopharmacol., 282, 114616 (2022). Doi: https://doi.org/10.1016/j.jep.2021.114616

104. A.P. Gupta, R. Garg, P. Singh, U.K. Goand, A.A. Syed, G.R. Valicherla, et al. Pancreastatin inhibitor PSTi8 protects the obesity associated skeletal muscle insulin resistance in diet induced streptozotocin-treated diabetic mice. Eur. J. Pharmacol., 881, 173204 (2020). Doi: https://doi.org/10.1016/j.ejphar.2020.173204

105. B. Gilbert, L.F. Alves & R.d.F. Favoreto. Monografias de Plantas Medicinais Brasileiras e Aclimatadas: Volume II. Editora Fiocruz, Rio de Janeiro, 2022; 191 p. Doi: https://doi.org/10.7476/9786557081778

106. C.C. Cechinel-Zanchett, S.F. De Andrade & V. Cechinel-Filho. Ethnopharmacological, phytochemical, pharmacological and toxicological aspects of Bauhinia forficata: A mini-review covering the last five years. Nat. Prod. Commun., 13(7), 911–916 (2018). Doi: https://doi.org/10.1177/1934578X1801300

107. M.S. Pinafo, P.R. Benedetti, L.B. Gaiotte, F.G. Costa, J.P.F. Schoffen, G.S.A. Fernandes, L.G.A. Chuffa & F.R.F. Seiva. Effects of Bauhinia forficata on glycaemia, lipid profile, hepatic glycogen content and oxidative stress in rats exposed to bisphenol A. Toxicol. Reports, 6, 244–252 (2019). Doi: https://doi.org/10.1016/j.toxrep.2019.03.001

108. P. Pereira da Silva-Dias, F.E. Ferreira-Alves, J.D. Oliveira-Alves, K. Pereira da Silva & M.I. Silva-Magalhães. Ação hipoglicemiante do extrato aquoso do caule da Bauhinia forficata (Mororó) em modelos experimentais diabéticos. Revista Interdisciplinar em Saúde (Cajazeiras), 8(único), 88–106 (2021). Doi: https://doi.org/10.35621/23587490.v8.n1.p88-106

109. R.H. Fortunato & M.J. Nores. “Cow’s hoof” (Bauhinia L., Leguminosae): A review on pharmacological properties of austral South American species. Plants, 12(1), 31 (2022). Doi: https://doi.org/10.3390/plants12010031

110. H. Kurose & S.G. Kim. Pharmacology of antagonism of GPCR. Biol. Pharm. Bull., 245(6), 669–674 (2022). https://doi.org/10.1248/bpb.b22-00143

111. L. Rodrigues da Silva, L.D.V. Martins, I. Bantim-Felicio-Calou, M.d.S. Meireles de Deus, P.M.P. Ferreira & A.P. Peron. Flavonóides: constituição química, ações medicinais e potencial tóxico. Acta Toxicológica Argentina, 23(1), 36–43 (2015). URL: https://www.scielo.org.ar/pdf/ata/v23n1/v23n1a04.pdf

112. B.R. Rocha, E.A. Maciel, S.R.M. Oliveira, Y.S. Terence & B.A. Silva. Influência dos alimentos funcionais na incidência das doenças crônicas transmissíveis (DCNT). Intercont. J. Phys. Educ., 3(1), e2020021 (2021). URL: https://app.periodikos.com.br/journal/ijpe/article/60274ea60e8825b8147e523a

113. H. Ren, S.B. Liu, T. Lou, F.Y. Fu, Q.L. Xu, S.X. Zhang & J.W. Tan. Two new ent-kaurane diterpenoids from the leaves of Sphagneticola trilobata. Phytochem. Lett., 49, 177–181 (2022). Doi: https://doi.org/10.1016/j.phytol.2022.04.001

Cómo citar

APA

G. P. de Paula, A., D. de Lima, J., Peitz, C., U. Veiga, R., Bosso dos Santos Luz, R., W. Junior, L., H. Q. Bordenowski, V., K. da Fontoura, A., G. Somensi, A., S. Uada, T., P. Fernandes, N., B. B. Maurer, J. & Braga, T. T. (2025). Popular Brazilian medicinal plants for therapeutic use in combating Diabetes. Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(3), 658–678. https://doi.org/10.15446/rcciquifa.v54n3.120983

ACM

[1]
G. P. de Paula, A., D. de Lima, J., Peitz, C., U. Veiga, R., Bosso dos Santos Luz, R., W. Junior, L., H. Q. Bordenowski, V., K. da Fontoura, A., G. Somensi, A., S. Uada, T., P. Fernandes, N., B. B. Maurer, J. y Braga, T.T. 2025. Popular Brazilian medicinal plants for therapeutic use in combating Diabetes. Revista Colombiana de Ciencias Químico-Farmacéuticas. 54, 3 (sep. 2025), 658–678. DOI:https://doi.org/10.15446/rcciquifa.v54n3.120983.

ACS

(1)
G. P. de Paula, A.; D. de Lima, J.; Peitz, C.; U. Veiga, R.; Bosso dos Santos Luz, R.; W. Junior, L.; H. Q. Bordenowski, V.; K. da Fontoura, A.; G. Somensi, A.; S. Uada, T.; P. Fernandes, N.; B. B. Maurer, J.; Braga, T. T. Popular Brazilian medicinal plants for therapeutic use in combating Diabetes. Rev. Colomb. Cienc. Quím. Farm. 2025, 54, 658-678.

ABNT

G. P. DE PAULA, A.; D. DE LIMA, J.; PEITZ, C.; U. VEIGA, R.; BOSSO DOS SANTOS LUZ, R.; W. JUNIOR, L.; H. Q. BORDENOWSKI, V.; K. DA FONTOURA, A.; G. SOMENSI, A.; S. UADA, T.; P. FERNANDES, N.; B. B. MAURER, J.; BRAGA, T. T. Popular Brazilian medicinal plants for therapeutic use in combating Diabetes. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 54, n. 3, p. 658–678, 2025. DOI: 10.15446/rcciquifa.v54n3.120983. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/120983. Acesso em: 27 dic. 2025.

Chicago

G. P. de Paula, André, Jordana D. de Lima, Camila Peitz, Rafael U. Veiga, Rebeca Bosso dos Santos Luz, Leonel W. Junior, Victor H. Q. Bordenowski, Andressa K. da Fontoura, Amanda G. Somensi, Thalita S. Uada, Nathália P. Fernandes, Juliana B. B. Maurer, y Tárcio Teodoro Braga. 2025. «Popular Brazilian medicinal plants for therapeutic use in combating Diabetes». Revista Colombiana De Ciencias Químico-Farmacéuticas 54 (3):658-78. https://doi.org/10.15446/rcciquifa.v54n3.120983.

Harvard

G. P. de Paula, A., D. de Lima, J., Peitz, C., U. Veiga, R., Bosso dos Santos Luz, R., W. Junior, L., H. Q. Bordenowski, V., K. da Fontoura, A., G. Somensi, A., S. Uada, T., P. Fernandes, N., B. B. Maurer, J. y Braga, T. T. (2025) «Popular Brazilian medicinal plants for therapeutic use in combating Diabetes», Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(3), pp. 658–678. doi: 10.15446/rcciquifa.v54n3.120983.

IEEE

[1]
A. G. P. de Paula, «Popular Brazilian medicinal plants for therapeutic use in combating Diabetes», Rev. Colomb. Cienc. Quím. Farm., vol. 54, n.º 3, pp. 658–678, sep. 2025.

MLA

G. P. de Paula, A., J. D. de Lima, C. Peitz, R. U. Veiga, R. Bosso dos Santos Luz, L. W. Junior, V. H. Q. Bordenowski, A. K. da Fontoura, A. G. Somensi, T. S. Uada, N. P. Fernandes, J. B. B. Maurer, y T. T. Braga. «Popular Brazilian medicinal plants for therapeutic use in combating Diabetes». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 54, n.º 3, septiembre de 2025, pp. 658-7, doi:10.15446/rcciquifa.v54n3.120983.

Turabian

G. P. de Paula, André, Jordana D. de Lima, Camila Peitz, Rafael U. Veiga, Rebeca Bosso dos Santos Luz, Leonel W. Junior, Victor H. Q. Bordenowski, Andressa K. da Fontoura, Amanda G. Somensi, Thalita S. Uada, Nathália P. Fernandes, Juliana B. B. Maurer, y Tárcio Teodoro Braga. «Popular Brazilian medicinal plants for therapeutic use in combating Diabetes». Revista Colombiana de Ciencias Químico-Farmacéuticas 54, no. 3 (septiembre 25, 2025): 658–678. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/120983.

Vancouver

1.
G. P. de Paula A, D. de Lima J, Peitz C, U. Veiga R, Bosso dos Santos Luz R, W. Junior L, H. Q. Bordenowski V, K. da Fontoura A, G. Somensi A, S. Uada T, P. Fernandes N, B. B. Maurer J, Braga TT. Popular Brazilian medicinal plants for therapeutic use in combating Diabetes. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 25 de septiembre de 2025 [citado 27 de diciembre de 2025];54(3):658-7. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/120983

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

120

Descargas

Los datos de descargas todavía no están disponibles.