Publicado

2025-07-08

GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models

GDMSafe: Mejora de la predicción de la diabetes gestacional mediante tejido adiposo visceral y modelos de aprendizaje conjunto

GDMSafe: Melhorando a previsão do diabetes gestacional por meio do tecido adiposo visceral e modelos de aprendizagem de conjunto

DOI:

https://doi.org/10.15446/rcciquifa.v54n2.121130

Palabras clave:

Gestational Diabetes Mellitus, Visceral Adipose Tissue, Random Forest, Ensemble Methods (en)
Diabetes Mellitus Gestacional, Tejido adiposo visceral, Bosque aleatorio, Métodos de conjunto (es)
Diabetes Mellitus Gestacional, Tecido adiposo visceral, Floresta aleatória, Métodos de conjunto (pt)

Descargas

Autores/as

  • M. Ramla Department of Computer Applications, National Institute of Technology, Thiruchirapalli, India
  • S. Sangeetha Department of Computer Applications, National Institute of Technology, Thiruchirapalli, India
  • S. Nickolas Department of Computer Applications at National Institute of Technology, Thiruchirapalli, India.

Introduction: Globally, diabetes is common chronic disease, which occurs when the pancreas in the body cannot generate enough insulin or body cannot utilize the generated insulin. Particularly, Gestational Diabetes Mellitus is the frequent condition, associated with the high maternal and fetal and morbidity. It is significant to detect the disease earlier to evade consequences in the future. Traditionally, detection of gestational diabetes comprises of the GCT (Glucose Challenge Test), OGTT (Glucose Tolerant Test). Conversely, it is the time consuming, inconvenience and subjectivity process. Purpose: To address the issue, conventional researches used AI (Artificial Intelligence) technology to automate the detection procedure. Nevertheless, it is limited by accuracy, speed, handling of larger datasets and high error rate. To overcome the problem, proposed model aimed at developing a predictive model to ascertain GDM based on the Visceral Fat deposit by leveraging the benefits of Ensemble learning methods. Contradicting the principles of Occam’s razor, ensemble models introduce complexity but still reduces the generalization error. Methodology: A group of 133 pregnant women upto 20 weeks of gestation from Physionet is utilized for this study and it has been already proven that there exists a strong correlation between VAT and GDM. Results: Convincing ROC and Accuracy is achieved and a comparison with PIMA Indian dataset demonstrate the robustness of the model for predicting Gestational Diabetes to move the knowledge in this field a little further along. 

Introducción: A nivel mundial, la diabetes es una enfermedad crónica común, que ocurre cuando el páncreas del cuerpo no puede generar suficiente insulina o el cuerpo no puede utilizar la insulina generada. En particular, la Diabetes Mellitus Gestacional es una condición frecuente, asociada a alta morbilidad materna y fetal. Es importante detectar la enfermedad a tiempo para evitar consecuencias en el futuro. Tradicionalmente, la detección de la diabetes gestacional se compone de la prueba de provocación con glucosa (TCG) y la prueba de tolerancia a la glucosa (PTGO). Por el contrario, es un proceso que consume tiempo, es inconveniente y subjetivo. Propósito: Para abordar el problema, las investigaciones convencionales utilizaron tecnología de IA (Inteligencia Artificial) para automatizar el procedimiento de detección. Sin embargo, está limitado por la precisión, la velocidad, el manejo de conjuntos de datos más grandes y una alta tasa de error. Para superar el problema, el modelo propuesto tuvo como objetivo desarrollar un modelo predictivo para garantizar la GDM basada en el depósito de grasa visceral aprovechando los beneficios de los métodos de aprendizaje de conjunto. Contradiciendo los principios de la navaja de Occam, los modelos de conjunto introducen complejidad pero aun así reducen el error de generalización. Metodología: Para este estudio se utiliza un grupo de 133 mujeres embarazadas de hasta 20 semanas de gestación de Physionet y ya se ha demostrado que existe una fuerte correlación entre VAT y DMG. Resultados: Se logra una ROC y una precisión convincentes y una comparación con el conjunto de datos indios PIMA demuestra la solidez del modelo para predecir la diabetes gestacional y hacer avanzar un poco más el conocimiento en este campo.

Introdução: Globalmente, o diabetes é uma doença crônica comum que ocorre quando o pâncreas não consegue gerar insulina suficiente ou o corpo não consegue utilizar a insulina gerada. Particularmente, o Diabetes Mellitus Gestacional é uma condição frequente, associada a alta morbidade materna e fetal. É importante detectar a doença precocemente para evitar consequências no futuro. Tradicionalmente, a detecção do diabetes gestacional compreende o TCG (Teste de Provocação de Glicose) e o TTGO (Teste de Tolerância à Glicose). Por outro lado, é um processo demorado, inconveniente e subjetivo. Objetivo: Para abordar o problema, a pesquisa convencional usa tecnologia de IA (Inteligência Artificial) para automatizar o procedimento de detecção. Entretanto, é limitado pela precisão, velocidade, manuseio de conjuntos de dados maiores e alta taxa de erro. Para superar o problema, o modelo proposto teve como objetivo desenvolver um modelo preditivo para determinar o GDM com base no depósito de gordura visceral, aproveitando os benefícios dos métodos de aprendizagem do Ensemble. Contrariando os princípios da navalha de Occam, os modelos de conjunto introduzem complexidade, mas ainda reduzem o erro de generalização. Metodologia: Utilizouse neste estudo um grupo de 133 gestantes com até 20 semanas de gestação da Physionet e já foi comprovado que existe uma forte correlação entre VAT e GDM. Resultados: ROC e precisão convincentes são alcançados e uma comparação com o conjunto de dados indiano PIMA demonstra a robustez do modelo para prever diabetes gestacional para levar o conhecimento neste campo um pouco mais adiante.

Referencias

1. A. Elliott, R.K. Walters, M. Pirinen, M. Kurki, N. Junna, J.I. Goldstein, M.P. Reeve, et al. Distinct and shared genetic architectures of gestational diabetes mellitus and type 2 diabetes. Nat. Genet., 56(3), 377–382 (2024). Doi: https://doi.org/10.1038/s41588-023-01607-4

2. E.U. Alejandro, T.P. Mamerto, G. Chung, A. Villavieja, N.L. Gaus, E. Morgan & M.R.B. Pineda-Cortel. Gestational diabetes mellitus: A harbinger of the vicious cycle of diabetes. Int. J. Mol. Sci., 21(14), 5003 (2020). Doi: https://doi.org/10.3390/ijms21145003

3. M.M.H. Wong, M.Y.-M. Chan, T.P. Ng & J.C.Y. Louie. Impact of carbohydrate quantity and quality on maternal and pregnancy outcomes in gestational diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab. Syndr., 18(1), 102941 (2024). Doi: https://doi.org/10.1016/j.dsx.2024.102941

4. A. Tranidou, I. Tsakiridis, A. Apostolopoulou, T. Xenidis, N. Pazaras, A. Mamopoulos, A. Athanasiadis, M. Chourdakis & T. Dagklis. Prediction of gestational diabetes mellitus in the first trimester of pregnancy based on maternal variables and pregnancy biomarkers. Nutrients, 16(1), 120 (2024). Doi: https://doi.org/10.3390/nu16010120

5. X. Li, Z. Niu, L. Bai & Q. Lu. New perspective on first-trimester serum uric acid level in predicting the risk of gestational diabetes mellitus. Sci. Rep., 14(1), 804 (2024). Doi: https://doi.org/10.1038/s41598-024-51507-8

6. S. Song, Y. Fu, Y. Dong, T. Yuan & W. Zhao. Fetal sex, glucose and lipid metabolism, and perinatal outcomes in gestational diabetes mellitus: A retrospective cohort study. Research Square, 2024. URL: https://www.researchsquare.com/article/rs-4735424/v1

7. A. Kumar, S.J. Shyam & N. Poornima. Detection of diabetic retinopathy using CNN. International Journal of Computer Science Trends and Technology (IJCST), 9(3), 72–77 (2021). URL: https://www.ijc-stjournal.org/volume-9/issue-3/IJCST-V9I3P12.pdf

8. M.B. Digey, S. Vaidya, P. Sudrik & N. Vaidya. Diabetes detection using convolutional neural net-works (Cnn) based model. Turkish Online Journal of Qualitative Inquiry (TOJQI), 12(4), 1261–1270 (2021). URL: https://www.tojqi.net/index.php/journal/article/view/8882/6324

9. J. Fang, Z. Xie, H. Cheng, B. Fan, H. Xu & P. Li. Anomaly detection of diabetes data based on hierarchical clustering and CNN. Procedia Computer Science, 199, 71–78 (2022). Doi: https://doi.org/10.1016/j.procs.2022.01.010

10. M.T. García-Ordás, C. Benavides, J.A. Benítez-Andrades, H. Alaiz-Moretón & I. García-Rodríguez. Diabetes detection using deep learning techniques with oversampling and feature augmentation. Comput. Methods Programs Biomed., 202, 105968 (2021). Doi: https://doi.org/10.1016/j.cmpb.2021.105968

11. S. Sridevi, B.K. Sahu, M. Yadav & B. Kumar. Improvised Detection of Diabetic Retinopathy Using Fast R CNN. Annals of the Romanian Society for Cell Biology, 25(5), 5153–5161 (2021). URL: https://www.proquest.com/openview/a93f1e3335e85a4d7b0d5caef5703e2a/1?cbl=2031963&pq-origsite=gscholar

12. J.E. Lee, H.-J. Jeon, O.-J. Lee & H.G. Lim. Diagnosis of diabetes mellitus using high frequency ultrasound and convolutional neural network. Ultrasonics, 136, 107167 (2024). Doi: https://doi.org/10.1016/j.ultras.2023.107167

13. K.V. Dayal, P. Singh, N. Sharma & M.K. Dubey. Detection of diabetic retinopathy using CNN. In-ternational Research Journal of Engineering and Technology (IRJET), 7(3), 1131–1134 (2020). URL: https://www.irjet.net/archives/V7/i3/IRJET-V7I3193.pdf

14. M. Harahap, S.K. Anjelli, W.A.M. Sinaga, R. Alward, J.F.W. Manawan & A.M. Husein., Classification of diabetic foot ulcer using convolutional neural network (CNN) in diabetic patients. Jurnal Infotel, 14(3), 196–202 (2022). Doi: https://doi.org/10.20895/infotel.v14i3.796

15. R.K. Yazid & S. Samsuryadi. Detection of diabetic retinopathy using Convolutional Neural Network (CNN). Computer Engineering and Applications Journal, 11(3), 203–213 (2022). URL: https://www.researchgate.net/publication/364703347_Detection_of_Diabetic_Retinopathy_Us-ing_Convolutional_Neural_Network_CNN

16. Y. Wang, P. Sun, Z. Zhao, Y. Yan, W. Yue, K. Yang, et al. Identify gestational diabetes mellitus by deep learning model from cell-free DNA at the early gestation stage. Brief. Bioinform., 25(1), bbad492 (2024). Doi: https://doi.org/10.1093/bib/bbad492

17. K.A. Kumar, R. Rajalakshmi, H. Shashikala, M. Ganjoo, A. Vats & R. Tyagi. Gestational diabetes detection using machine learning algorithm: Research challenges of big data and data mining. International Journal of Intelligent Systems and Applications in Engineering, 10(2s), 260–263 (2022). URL: https://ijisae.org/index.php/IJISAE/article/view/2396/978

18. M. Rahman, D. Islam, R.J. Mukti & I. Saha. A deep learning approach based on convolutional LSTM for detecting diabetes. Comput. Biol. Chem., 88, 107329 (2020). Doi: https://doi.org/10.1016/j.compbiolchem.2020.107329

19. S. Albahli & G.N.A. Hassan-Yar. Automated detection of diabetic retinopathy using custom convolutional neural network. Journal of X-Ray Science and Technology, 30(2), 275–291 (2022). URL: https://journals.sagepub.com/doi/abs/10.3233/XST-211073

20. P. Madan, V. Singh, V. Chaudhari, Y. Albagory, A. Dumka, R. Singh, A. Gehlot, M. Rashid, S.S. Alshamrani & A.S. AlGhamdi. An optimization-based diabetes prediction model using CNN and Bi-directional LSTM in real-time environment. Appl. Sci., 12(8), 3989 (2022). Doi: https://doi.org/10.3390/app12083989

21. S.A. Alex, N. Jhanjhi, M. Humayun, A.O. Ibrahim & A.W. Abulfaraj. Deep LSTM model for diabetes prediction with class balancing by SMOTE. Electronics, 11(17), 2737 (2022). Doi: https://doi.org/10.3390/electronics11172737

22. S.A. Alex, J.J.V. Nayahi, H. Shine & V. Gopirekha. Deep convolutional neural network for diabetes mellitus prediction. Neural Comput. Appl., 34(2), 1319–1327 (2022). Doi: https://doi.org/10.1007/s00521-021-06431-7

23. P.B.K. Chowdary & R.U. Kumar. An effective approach for detecting diabetes using deep learning techniques based on convolutional LSTM networks. International Journal of Advanced Computer Science and Applications, 12(4), 519–525 (2021). URL: https://thesai.org/Downloads/Volume12No4/Paper_66-An_Effective_Approach_for_Detecting_Diabetes.pdf

24. R. Amalia, A. Bustamam & D. Sarwinda. Detection and description generation of diabetic retinopathy using convolutional neural network and long short-term memory. J. Phys.: Conf. Ser., 1722, 012010 (2021). URL: https://iopscience.iop.org/article/10.1088/1742-6596/1722/1/012010/pdf

25. A. Sungheetha & R. Sharma. Design an early detection and classification for diabetic retinopathy by deep feature extraction based convolution neural network. Journal of Trends in Computer Science and Smart Technology, 3(2), 81–94 (2021). URL: https://irojournals.com/tcsst/article/view/3/2/2

26. S. Naveena & A. Bharathi. Weighted entropy deep features on hybrid RNN with LSTM for glucose level and diabetes prediction. Comp. Methods Biomech. Biomed. Engin., 26(15), 1834–1858 (2023). Doi: https://doi.org/10.1080/10255842.2022.2149263

27. B.N. Bansode, B. K.M., A.S. Dildar & S. G.S. Deep CNN-based feature extraction with optimised LSTM for enhanced diabetic retinopathy detection. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11(3), 960–975 (2023). Doi: https://doi.org/10.1080/21681163.2022.2124545

28. N.E. El-Attar, B.M. Moustafa & W.A. Awad. Deep learning model to detect diabetes mellitus based on DNA sequence. Intelligent Automation & Soft Computing, 31(1), 325–338 (2022). Doi: https://doi.org/10.32604/iasc.2022.019970

Cómo citar

APA

Ramla, M., Sangeetha, S. & Nickolas, S. (2025). GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models. Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(2), 323–344. https://doi.org/10.15446/rcciquifa.v54n2.121130

ACM

[1]
Ramla, M., Sangeetha, S. y Nickolas, S. 2025. GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models. Revista Colombiana de Ciencias Químico-Farmacéuticas. 54, 2 (jul. 2025), 323–344. DOI:https://doi.org/10.15446/rcciquifa.v54n2.121130.

ACS

(1)
Ramla, M.; Sangeetha, S.; Nickolas, S. GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models. Rev. Colomb. Cienc. Quím. Farm. 2025, 54, 323-344.

ABNT

RAMLA, M.; SANGEETHA, S.; NICKOLAS, S. GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 54, n. 2, p. 323–344, 2025. DOI: 10.15446/rcciquifa.v54n2.121130. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/121130. Acesso em: 28 dic. 2025.

Chicago

Ramla, M., S. Sangeetha, y S. Nickolas. 2025. «GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models». Revista Colombiana De Ciencias Químico-Farmacéuticas 54 (2):323-44. https://doi.org/10.15446/rcciquifa.v54n2.121130.

Harvard

Ramla, M., Sangeetha, S. y Nickolas, S. (2025) «GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models», Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(2), pp. 323–344. doi: 10.15446/rcciquifa.v54n2.121130.

IEEE

[1]
M. Ramla, S. Sangeetha, y S. Nickolas, «GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models», Rev. Colomb. Cienc. Quím. Farm., vol. 54, n.º 2, pp. 323–344, jul. 2025.

MLA

Ramla, M., S. Sangeetha, y S. Nickolas. «GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 54, n.º 2, julio de 2025, pp. 323-44, doi:10.15446/rcciquifa.v54n2.121130.

Turabian

Ramla, M., S. Sangeetha, y S. Nickolas. «GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models». Revista Colombiana de Ciencias Químico-Farmacéuticas 54, no. 2 (julio 8, 2025): 323–344. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/121130.

Vancouver

1.
Ramla M, Sangeetha S, Nickolas S. GDMSafe: Enhancing gestational diabetes prediction through visceral adipose tissue and ensemble learning models. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 8 de julio de 2025 [citado 28 de diciembre de 2025];54(2):323-44. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/121130

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

220

Descargas

Los datos de descargas todavía no están disponibles.