Publicado
Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures
Análisis termodinámico y solvatación preferencial de la solubilidad del metronidazol en mezclas cosolventes metanol-agua y etanol-agua a diferentes temperaturas
Análise termodinâmica e solvatação preferencial da solubilidade do metronidazol em misturas de metanol-água e etanol-água a diferentes temperaturas
DOI:
https://doi.org/10.15446/rcciquifa.v54n2.121131Palabras clave:
Solubility, metronidazole, solution thermodynamics, enthalpy-entropy compensation, preferential solvation (en)Solubilidad, metronidazol, termodinámica de soluciones, compensación entalpía-entropía, solvatación preferencial (es)
solubilidade, metronidazol, termodinâmica de soluções, compensação entalpia-entropia, solvatação preferencial (pt)
Descargas
Introduction: Solubility is one of the most important physicochemical properties because it is related to some industrial processes such as: formulation, preformulation, purification and quantification. Objective: This paper presents the thermodynamic analysis of the solubility of metronidazole in methanolwater and ethanolwater cosolvent mixtures at seven temperatures. Methodology: From solubility data, the thermodynamic functions of solution and mixture are calculated and analysed using the Perlovich graphical method. On the other hand, an enthalpyentropy compensation analysis is performed, and the preferential solvation parameters are calculated using the inverse KirkwoodBuff integral (IKBI) method. Results: The result of the calculations performed indicates that the dissolution process of metronidazole is endothermic with entropic preference, where the addition of methanol and ethanol has a positive cosolvent effect in intermediate and waterrich mixtures. With regard to preferential solvation, the results are not entirely conclusive, since, except in intermediate mixtures, the values of the preferential solvation parameter are less than 0.01, so that negligible preferential solvation takes place.
Introducción: La solubilidad es una de las propiedades fisicoquímicas más importantes, puesto que está relacionada con algunos procesos industriales, como: formulación, preformulación, purificación y cuantificación. Objetivo: Este trabajo presenta el análisis termodinámico de la solubilidad del metronidazol en mezclas de cosolventes metanol + agua y etanol + agua a siete temperaturas diferentes. Metodología: A partir de los datos de solubilidad, se calcularon y analizaron las funciones termodinámicas de la solución y la mezcla mediante el método gráfico de Perlovich. Por otro lado, se realiza un análisis de compensación entalpía-entropía y se calculan los parámetros de solvatación preferencial mediante el método de la integral inversa de Kirkwood-Buff (IKBI). Resultados: Los cálculos realizados indican que el proceso de disolución del metronidazol es endotérmico con favorecimiento entrópico, la adición de metanol y etanol tiene un efecto cosolvente positivo en mezclas intermedias y ricas en agua. En cuanto al parámetro de solvatación preferencial, los resultados no son del todo concluyentes, ya que, salvo en las mezclas intermedias, los valores del parámetro de solvatación preferencial son inferiores a 0,01, por lo que se concluye que se tiene una solvatación preferencial despreciable.
Introdução: A solubilidade é uma das propriedades físico-químicas mais importantes, pois está relacionada com vários processos industriais, nomeadamente formulação, préformulação, purificação e quantificação. Objetivo: O presente trabalho apresenta a análise termodinâmica da solubilidade do metronidazol em misturas de metanol + água e etanol + água em sete temperaturas diferentes. Metodologia: A partir dos dados de solubilidade, as funções termodinâmicas da solução e da mistura foram calculadas e analisadas com recurso ao método gráfico de Perlovich. Além disso, é efetuada uma análise de troca de entalpiaentropia e os parâmetros de solvatação preferenciais são calculados utilizando o método integral inverso de KirkwoodBuff (IKBI). Resultados: Os cálculos indicam que o processo de dissolução do metronidazol é endotérmico com favorecimento entrópico, e que a adição de metanol e etanol tem um efeito positivo de cosolvente em misturas intermédias e ricas em água. No que se refere ao parâmetro de solvatação preferencial, os resultados não são totalmente conclusivos, uma vez que, exceto nas misturas intermédias, os valores do parâmetro de solvatação preferencial são inferiores a 0,01, pelo que se conclui que a solvatação preferencial é desprezível.
Referencias
1. C.D. Freeman, N.E. Klutman & K.C. Lamp. Metronidazole: A therapeutic review and update. Drugs, 54(5), 679–708 (1997). Doi: https://doi.org/10.2165/00003495-199754050-00003
2. B. Ursing & C. Kamme. Metronidazole for Crohn´s disease. The Lancet, 305(7910), 775–777 (1975). Doi: https://doi.org/10.1016/S0140-6736(75)92438-1
3. A.E. Gahrouei, S. Vakili, A. Zandifar & S. Pourebrahimi. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). Environ. Res., 252(Part 3), 119029 (2024). Doi: https://doi.org/10.1016/j.envres.2024.119029
4. L.J. Suárez, R.M. Arce, C. Gonçalves, C.P. Furquim, N.C. Dos Santos, B. Retamal-Valdes & M. Feres. Metronidazole may display anti-inflammatory features in periodontitis treatment: A scoping review. Mol. Oral Microbiol., 39(4), 240–259 (2024). Doi: https://doi.org/10.1111/omi.12459
5. A. Pobudkowska, U. Domańska, B.A. Jurkowska & K. Dymczuk. Solubility of pharmaceuticals in water and alcohols. Fluid Phase Equilib., 392, 56–64 (2015). Doi: https://doi.org/10.1016/j.fluid.2015.02.018
6. A.K. Shah & S.A. Agnihotri. Recent advances and novel strategies in pre-clinical formulation development: An overview. J. Control. Release, 156(3), 281–296 (2011). Doi: https://doi.org/10.1016/j.jconrel.2011.07.003
7. J. Alsenz & M. Kansy. High throughput solubility measurement in drug discovery and development. Adv. Drug Deliv. Rev., 59(7), 546–567 (2007). Doi: https://doi.org/10.1016/j.addr.2007.05.007
8. E. Strade, D. Kalnina & J. Kulczycka. Water efficiency and safe re-use of different grades of water - Topical issues for the pharmaceutical industry. Water Resour. Ind., 24, 100132 (2020). Doi: https://doi.org/10.1016/j.wri.2020.100132
9. D.J.C. Constable, C. Jimenez-Gonzalez & R.K. Henderson. Perspective on solvent use in the pharmaceutical industry. Org. Process. Res. Dev., 11(1), 133–137 (2007). Doi: https://doi.org/10.1021/op060170h
10. S.S. Tabibian & M. Sharifzadeh. Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol. Renew. Sust. Energ. Rev., 179, 113281 (2023). Doi: https://doi.org/10.1016/j.rser.2023.113281
11. H. Xiao, Y. Feng, W.R.F. Goundry & S. Karlsson. Organic solvent nanofiltration in pharmaceutical applications. Org. Process. Res. Dev., 28(4), 891–923 (2024). Doi: https://doi.org/10.1021/acs.oprd.3c00470
12. A. Dogan, C.C. Eylem & N.E.B. Akduman. Application of green methodology to pharmaceutical analysis using eco-friendly ethanol-water mobile phases. Microchem. J., 157, 104895 (2020). Doi: https://doi.org/10.1016/j.microc.2020.104895
13. E.A. Rashad, S.S. Elsayed, J.J.M. Nasr & F.A. Ibrahim. Factorial design optimized green reversed-phase high-performance liquid chromatography for simultaneous determination of aspirin and clopidogrel in pharmaceutical tablets. Microchem. J., 190, 108610 (2023). Doi: https://doi.org/10.1016/j.microc.2023.108610
14. M.A.A. Fakhree, D.R. Delgado, F. Martínez & A. Jouyban. The importance of dielectric constant for drug solubility prediction in binary solvent mixtures: electrolytes and zwitterions in water + etha-nol. AAPS PharmSciTech, 11(4), (2010) 1726–1729 (2010). Doi: https://doi.org/10.1208/S12249-010-9552-3
15. T.A. Ahmed, K.M. El-Say, O.A.A. Ahmed & A.S. Zidan. Sterile dosage forms loaded nanosystems for parenteral, nasal, pulmonary and ocular administration. In: A.M. Grumezescu (editor). Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology, Elsevier, 2018, pp. 335–395. Doi: https://doi.org/10.1016/B978-0-12-813629-4.00009-7
16. D.M. Cristancho, D.R. Delgado & F. Martínez. Meloxicam solubility in ethanol+water mixtures according to the extended Hildebrand solubility approach. J. Solution Chem., 42(8), 1706–1716 (2013). Doi: https://doi.org/10.1007/S10953-013-0058-Y.
17. G.R. Rojas, A.F. Rivera & D.R. Delgado. Application of the Extended Hildebrand solubility approach applied to mitomycin C in ethanol+ water mixtures. Ingeniería y Región, 13(1), 149–157 (2015). Doi: https://doi.org/10.25054/22161325.716.
18. D.R. Delgado, C.P. Ortiz, F. Martínez & A. Jouyban. Equilibrium solubility of sulfadiazine in (acetonitrile + ethanol) mixtures: Determination, correlation, dissolution thermodynamics, and preferential solvation. Int. J. Thermophys., 45, 129 (2024). Doi: https://doi.org/10.1007/S10765-024-03405-4
19. I. Nyamba, C.B. Sombié, M. Yabré, H. Zimé-Diawara, J. Yaméogo, S. Ouédraogo, A. Lechanteur, R. Semdé & B. Evrard. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur. J. Pharm. Biopharm., 204, 114513 (2024). Doi: https://doi.org/10.1016/j.ejpb.2024.114513
20. A. Aydi, C. Ayadi, K. Ghachem, A.Z. Al-Khazaal, D.R. Delgado, M. Alnaief & L. Kolsi. Solubility, solution thermodynamics, and preferential solvation of amygdalin in ethanol + water solvent mix-tures. Pharmaceuticals, 13(11), 395 (2020). Doi: https://doi.org/10.3390/ph13110395
21. M. Khoubnasabjafari, D.R. Delgado, F. Martinez, A. Jouyban & W.E. Acree. Predicting the solubility, thermodynamic properties and preferential solvation of sulphamethazine in {acetonitrile + water} mixtures using a minimum number of experimental data points. Phys. Chem. Liq., 59(3), 400–411 (2021). Doi: https://doi.org/10.1080/00319104.2020.1731812
22. R. V. Mantri, R. Sanghvi & H.J. Zhu. Solubility of pharmaceutical solids. In: Y. Qiu, Y. Chen, G.G.Z. Zhang, L. Yu & R.V. Mantri. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, 2nd ed., Academic Press, 2017, pp. 3–22. Doi: https://doi.org/10.1016/B978-0-12-802447-8.00001-7
23. K.T. Savjani, A.K. Gajjar & J.K. Savjani. Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, 2012, 195727 (2012). Doi: https://doi.org/10.5402/2012/195727
24. J. Tovar-Amézquita, C. Rincón-Guio, F.E. Torres-Suarez, M.M. Florez, C.P. Ortiz, F. Martinez & D.R. Delgado. Thermodynamic assessment of the pyrazinamide dissolution process in some organic solvents. Molecules, 29(21), 5089 (2024). Doi: https://doi.org/10.3390/molecules29215089
25. C.P. Ortiz, D.I. Caviedes-Rubio, F. Martinez & D.R. Delgado. Solubility of sulfamerazine in acetonitrile + ethanol cosolvent mixtures: Thermodynamics and modelling. Molecules, 29(22), 5294 (2024). Doi: https://doi.org/10.3390/molecules29225294
26. D.R. Delgado, J.K. Castro-Camacho, C.P. Ortiz, D.I. Caviedes-Rubio & F. Martinez. Dissolution thermodynamics of the solubility of sulfamethazine in (acetonitrile + 1-propanol) mixtures. Pharmaceuticals, 17(12), 1594 (2024). Doi: https://doi.org/10.3390/ph17121594
27. D.A. Rivas-Ozuna, C.P. Ortiz, D.R. Delgado & F. Martínez. Solubility and preferential solvation of pyrazinamide in some aqueous-cosolvent mixtures at 298.15 K. Int. J. Thermophys., 45, 39 (2024). Doi: https://doi.org/10.1007/S10765-023-03318-8
28. Y. Marcus. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq., 140, 61–67 (2008). Doi: https://doi.org/10.1016/j.molliq.2008.01.005
29. Y. Marcus. Preferential solvation in mixed solvents. 15. Mixtures of acetonitrile with organic solvents. J. Chem. Thermodyn., 135, 55–59 (2019). Doi: https://doi.org/10.1016/j.jct.2019.03.019
30. G. Yu, C. Chen, Y. Xie, W. Yuan, Y. Zhang & J. Chen. Solubility measurement, correlation, thermodynamic properties, and solvent effect of metronidazole in seven pure solvents and two binary solvent systems. J. Chem. Thermodyn., 203, 107430 (2025). Doi: https://doi.org/10.1016/j.jct.2024.107430
31. D.R. Delgado & F. Martínez. Solution thermodynamics of sulfadiazine in some ethanol + water mixtures. J. Mol. Liq., 187, 99–105 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.06.011
32. D.R. Delgado & F. Martínez. Thermodynamic analysis of the solubility of propranolol-HCl in ethanol + water mixtures. Lat. Am. J. Pharm., 30(1), 89–95 (2011). URL: https://www.latamjpharm.org/resumenes/30/1/LAJOP_30_1_1_13.pdf
33. D.R. Delgado & F. Martínez. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib., 360, 88–96 (2013). Doi: https://doi.org/10.1016/j.fluid.2013.09.018
34. D.R. Delgado & F. Martínez. Solution thermodynamics of sulfadiazine in some ethanol + water mixtures. J. Mol. Liq., 187, 99–105 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.06.011
35. D.R. Delgado & F. Martínez. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib., 379, 128–138 (2014). Doi: https://doi.org/10.1016/j.fluid.2014.07.013
36. D.R. Delgado & F. Martínez. Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures. Phys. Chem. Liq., 53, 293–306 (2015). Doi: https://doi.org/10.1080/00319104.2014.961191
37. D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M. Peña, O.A. Almanza, F. Martínez & A. Jouyban. Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures. J. Mol. Liq., 271, 522–529 (2018). Doi: https://doi.org/10.1016/j.molliq.2018.09.026
38. D.R. Delgado & F. Martínez. Thermodynamic study of the solubility of sodium sulfadiazine in some ethanol + water cosolvent mixtures. Vitae, 17(2), 191–198 (2010). Doi: https://doi.org/10.17533/udea.vitae.6344
39. M.A. Ruidiaz, D.R. Delgado & F. Martínez. Correlating the solubility of indomethacin in 1,4-dioxane + water mixtures by means of the Jouyban-Acree model. Rev. Colomb. Cienc. Quím. Farm., 39(2), 211–226 (2010). URL: http://www.scielo.org.co/pdf/rccqf/v39n2/v39n2a07.pdf
40. G.A. Rodríguez, D.R. Delgado & F. Martínez. Preferential solvation of indomethacin and naproxen in ethyl acetate + ethanol mixtures according to the IKBI method. Phys. Chem. Liq., 52(4), 533–545 (2014). Doi: https://doi.org/10.1080/00319104.2013.842474
41. D.R. Delgado & F. Martínez. Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. J. Mol. Liq., 193, 152–159 (2014). Doi: https://doi.org/10.1016/j.molliq.2013.12.021
42. D.R. Delgado, E.F. Vargas & F. Martínez. Preferential solvation of xylitol in ethanol + water cosolvent mixtures according to the IKBI and QLQC methods. Rev. Colomb. Quím., 42(1), 59–66 (2013). URL: http://www.scielo.org.co/pdf/rcq/v42n1/v42n1a08.pdf
43. D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban & W.E. Acree. Solution thermo-dynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J. Chem. Thermodyn., 97, 264–276 (2016). Doi: https://doi.org/10.1016/j.jct.2016.02.002
44. A. Aydi, C.P. Ortiz, D.I. Caviedes-Rubio, C. Ayadi, S. Hbaieb & D.R. Delgado. Solution thermody-namics and preferential solvation of sulfamethazine in ethylene glycol + water mixtures. J. Taiwan Inst. Chem. Eng., 118, 68–77 (2021). Doi: https://doi.org/10.1016/j.jtice.2020.12.031
45. A.F.M. Barton. CRC Handbook of Solubility Parameters and other Cohesion Parameters, 2nd ed. CRC Press, Boca Raton (FL), 1991. Doi: https://doi.org/10.1201/9781315140575
46. R.R. Krug, W.G. Hunter & R.A. Grieger. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J. Phys. Chem., 80(21), 2335–2341 (1976). Doi: https://doi.org/10.1021/j100562a006
47. R.R. Krug, W.G. Hunter & R.A. Grieger. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem., 80(21), 2341–2351 (1976). Doi: https://doi.org/10.1021/j100562a007
48. Y.L. Cuellar-Carmona, N.E. Cerquera, R.E. Cardenas-Torres, C.P. Ortiz, F. Martínez & D.R. Delgado. Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models. Braz. J. Chem. Eng., 1–14 (2024). Doi: https://doi.org/10.1007/S43153-024-00489-1
49. D.I. Caviedes-Rubio, C.P. Ortiz, F. Martinez & D.R. Delgado. Thermodynamic assessment of triclocarban dissolution process in N-methyl-2-pyrrolidone + water cosolvent mixtures. Molecules, 28(20), 7216 (2023). Doi: https://doi.org/10.3390/molecules28207216
50. D.R. Delgado, A. Romdhani & F. Martínez. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat. Am. J. Pharm., 30(10), 2024–2054 (2011). URL: https://www.latamjpharm.org/resumenes/30/10/LAJOP_30_10_1_23.pdf
51. M.A. Parra, N.E. Cerquera, C.P. Ortiz, R.E. Cárdenas-Torres, D.R. Delgado, M.Á. Peña & F. Martínez. Solubility of ciprofloxacin in different solvents at several temperatures: Measurement, correlation, thermodynamics and Hansen solubility parameters. J. Taiwan Inst. Chem. Eng., 150, 105028 (2023). Doi: https://doi.org/10.1016/j.jtice.2023.105028
52. E.A. Cantillo, D.R. Delgado & F. Martinez. Solution thermodynamics of indomethacin in ethanol + propylene glycol mixtures. J. Mol. Liq., 181, 62–67 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.02.008
53. C.P. Ortiz, R.E. Cardenas-Torres, M. Herrera & D.R. Delgado. Numerical analysis of sulfamerazine solubility in acetonitrile + 1-propanol cosolvent mixtures at different temperatures. Sustainability (Basel), 15(8), 6596 (2023). Doi: https://doi.org/10.3390/su15086596
54. D.R. Delgado, E.F. Vargas & F. Martinez. Thermodynamic study of the solubility of procaine HCl in some ethanol + water cosolvent mixtures. J. Chem. Eng. Data, 55(8), 2900–2904 (2010). Doi: https://doi.org/10.1021/JE900958Z
55. D.R. Delgado & F. Martínez. Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J. Solution Chem., 43(5), 836–852 (2014). Doi: https://doi.org/10.1007/S10953-014-0169-0
56. G.L. Perlovich, S.V. Kurkov & A. Bauer-Brandl. Thermodynamics of solutions: II. Flurbiprofen and diflunisal as models for studying solvation of drug substances. Eur. J. Pharm. Sci., 19(5), (2003) 423–432 (2003). Doi: https://doi.org/10.1016/S0928-0987(03)00145-3
57. G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.J. Schaper & O.A. Raevsky. Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media. J. Chem. Thermodyn., 69, 56–65 (2014). Doi: https://doi.org/10.1016/j.jct.2013.09.027
58. G.L. Perlovich, S.V. Kurkov & A. Bauer-Brandl. The difference between partitioning and distribu-tion from a thermodynamic point of view: NSAIDs as an example. Eur. J. Pharm. Sci., 27(2-3), 150–157 (2006). Doi: https://doi.org/10.1016/j.ejps.2005.09.003
59. G.L. Perlovich, S.V. Kurkov, A.N. Kinchin & A. Bauer-Brandl. Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs. Eur. J. Pharm. Biopharm., 57(2), 411–420 (2004). Doi: https://doi.org/10.1016/j.ejpb.2003.10.021
60. J.H. Hildebrand, J.M. Prausnitz & R.L. Scott. Regular and related solutions; the solubility of gases, liquids, and solids. Van Nostrand Reinhold Co, Minnesota, 1970.
61. C. Bustamante & P. Bustamante. Nonlinear enthalpy-entropy compensation for the solubility of phenacetin in dioxane-water solvent mixtures. J. Pharm. Sci., 85(10), 1109–1111 (1996). Doi: https://doi.org/10.1021/js950497o
62. F. Martínez, M.Á. Peña & P. Bustamante. Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures. Fluid Phase Equilib., 308(1-2), 98–106 (2011). Doi: https://doi.org/10.1016/j.fluid.2011.06.016
63. K. Sharp. Entropy—enthalpy compensation: Fact or artifact? Protein Sci., 10(3), 661–667 (2001). Doi: https://doi.org/10.1110/ps.37801
64. J.J. Agredo-Collazos, C.P. Ortiz, N.E. Cerquera, R.E. Cardenas-Torres, D.R. Delgado, M.Á. Peña & F. Martínez. Equilibrium solubility of triclocarban in (cyclohexane + 1,4-dioxane) mixtures: Determination, correlation, thermodynamics and preferential solvation. J. Solution Chem., 51(12), 1603–1625 (2022). Doi : https://doi.org/10.1007/S10953-022-01209-4
65. R.E. Cárdenas-Torres, C.P. Ortiz, W.E. Acree, A. Jouyban, F. Martínez & D.R. Delgado. Thermodynamic study and preferential solvation of sulfamerazine in acetonitrile + methanol cosolvent mixtures at different temperatures. J. Mol. Liq., 349, 118172 (2022). Doi: https://doi.org/10.1016/j.molliq.2021.118172
66. C.P. Ortíz, R.E. Cardenas-Torres, D.I. Caviedes-Rubio, S.D.J. Polania-Orozco & D.R. Delgado. Thermodynamic analysis and preferential solvation of sulfanilamide in different cosolvent mixtures. Phys. Chem. Liq., 60(1), 9–24 (2022). Doi: https://doi.org/10.1080/00319104.2021.1888382
67. Y. Marcus. Preferential solvation of drugs in binary solvent mixtures. Pharm. Anal. Acta, 8(1), 1000537 (2017). Doi: https://doi.org/10.4172/2153-2435.1000537
68. Y. Marcus. Solvent Mixtures: Properties and Selective Solvation. CRC Press, Boca Raton (FL), 2002.
69. Y. Marcus. Preferential solvation in mixed solvents. In: P.E. Smith, E. Matteoli & J.P. O'Connell (editors). Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics. CRC Press, Boca Raton (FL), 2013, pp. 65–92.
70. A.K. Nain. Inversion of the Kirkwood-Buff theory of solutions: Application to tetrahydrofuran + aromatic hydrocarbon binary liquid mixtures. J. Solution Chem., 37(11), 1541–1559 (2008). Doi: https://doi.org/10.1007/S10953-008-9326-7
71. Y. Marcus. The Properties of Solvents. John Wiley & Sons Ltd, New York (NY), 1999.
72. C. Coquelet, A. Valtz & D. Richon. Volumetric properties of water + monoethanolamine + methanol mixtures at atmospheric pressure from 283.15 to 353.15 K. J. Chem. Eng. Data, 50(2), 412–418 (2005). Doi: https://doi.org/10.1021/je049691v
73. M.J. Kamlet & R.W. Taft. The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc., 98(2), 377–383 (1976). Doi: https://doi.org/10.1021/ja00418a009
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




