Publicado

2025-07-08

Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures

Análisis termodinámico y solvatación preferencial de la solubilidad del metronidazol en mezclas cosolventes metanol-agua y etanol-agua a diferentes temperaturas

Análise termodinâmica e solvatação preferencial da solubilidade do metronidazol em misturas de metanol-água e etanol-água a diferentes temperaturas

DOI:

https://doi.org/10.15446/rcciquifa.v54n2.121131

Palabras clave:

Solubility, metronidazole, solution thermodynamics, enthalpy-entropy compensation, preferential solvation (en)
Solubilidad, metronidazol, termodinámica de soluciones, compensación entalpía-entropía, solvatación preferencial (es)
solubilidade, metronidazol, termodinâmica de soluções, compensação entalpia-entropia, solvatação preferencial (pt)

Descargas

Autores/as

  • German Fabian Escobar Fiesco Departamento Matemática y Estadística, Universidad Surcolombiana, Avenida Pastrana Borrero, Ca-rrera 1, Neiva, 410001, Huila, Colombia
  • Diego Ivan Caviedes-Rubio Grupo de Investigación de Ingenierías UCC-Neiva, Facultad de Ingeniería, Programa de Ingeniería Civil, Universidad Cooperativa de Colombia, Calle 11 N 1f-97, Neiva, 410001, Huila, Colombia
  • Claudia Patricia Ortiz Sifati Group Ingeniería S.A.S., Grupo de Investigaciones Ciencia, Ingeniería e Innovación, Palermo, Huila, Colombia
  • Yaqueline Quintero Guerrero Maestría en Ingeniería y Gestión Ambiental, Universidad Surcolombiana, Avenida Pastrana Borrero, Carrera 1, Neiva, 410001, Huila, Colombia
  • Néstor Enrique Cerquera Programa de Ingeniería Agrícola, Universidad Surcolombiana, Avenida Pastrana Borrero, Carrera 1, Neiva, 410001, Huila, Colombia
  • Cristian Rincón-Guio Rectoría Virtual, Ingeniería Industrial, Corporación Universitaria Minuto de Dios-UNIMINUTO, Bo-gotá 110321, Cundinamarca, Colombia
  • Rossember Edén Cardenas-Torres Grupo de Investigación ENERDIMAT, Facultad de Ciencias y Humanidades, Fundación Universidad de América, Avenida Circunvalar No. 20-53, Bogotá D.C, 110321, Bogotá, Colombia
  • Daniel Ricardo Delgado Grupo de Investigación de Ingenierías UCC-Neiva, Facultad de Ingeniería, Programa de Ingeniería Civil, Universidad Cooperativa de Colombia, Calle 11 N 1f-97, Neiva, 410001, Huila, Colombia

 Introduction: Solubility is one of the most important physicochemical properties because it is related to some industrial processes such as: formulation, preformulation, purification and quantification. Objective: This paper presents the thermodynamic analysis of the solubility of metronidazole in methanolwater and ethanolwater cosolvent mixtures at seven temperatures. Methodology: From solubility data, the thermodynamic functions of solution and mixture are calculated and analysed using the Perlovich graphical method. On the other hand, an enthalpyentropy compensation analysis is performed, and the preferential solvation parameters are calculated using the inverse KirkwoodBuff integral (IKBI) method. Results: The result of the calculations performed indicates that the dissolution process of metronidazole is endothermic with entropic preference, where the addition of methanol and ethanol has a positive cosolvent effect in intermediate and waterrich mixtures. With regard to preferential solvation, the results are not entirely conclusive, since, except in intermediate mixtures, the values of the preferential solvation parameter are less than 0.01, so that negligible preferential solvation takes place.

Introducción: La solubilidad es una de las propiedades fisicoquímicas más importantes, puesto que está relacionada con algunos procesos industriales, como: formulación, preformulación, purificación y cuantificación. Objetivo: Este trabajo presenta el análisis termodinámico de la solubilidad del metronidazol en mezclas de cosolventes metanol + agua y etanol + agua a siete temperaturas diferentes. Metodología: A partir de los datos de solubilidad, se calcularon y analizaron las funciones termodinámicas de la solución y la mezcla mediante el método gráfico de Perlovich. Por otro lado, se realiza un análisis de compensación entalpía-entropía y se calculan los parámetros de solvatación preferencial mediante el método de la integral inversa de Kirkwood-Buff (IKBI). Resultados: Los cálculos realizados indican que el proceso de disolución del metronidazol es endotérmico con favorecimiento entrópico, la adición de metanol y etanol tiene un efecto cosolvente positivo en mezclas intermedias y ricas en agua. En cuanto al parámetro de solvatación preferencial, los resultados no son del todo concluyentes, ya que, salvo en las mezclas intermedias, los valores del parámetro de solvatación preferencial son inferiores a 0,01, por lo que se concluye que se tiene una solvatación preferencial despreciable.

 

Introdução: A solubilidade é uma das propriedades físico-químicas mais importantes, pois está relacionada com vários processos industriais, nomeadamente formulação, préformulação, purificação e quantificação. Objetivo: O presente trabalho apresenta a análise termodinâmica da solubilidade do metronidazol em misturas de metanol + água e etanol + água em sete temperaturas diferentes. Metodologia: A partir dos dados de solubilidade, as funções termodinâmicas da solução e da mistura foram calculadas e analisadas com recurso ao método gráfico de Perlovich. Além disso, é efetuada uma análise de troca de entalpiaentropia e os parâmetros de solvatação preferenciais são calculados utilizando o método integral inverso de KirkwoodBuff (IKBI). Resultados: Os cálculos indicam que o processo de dissolução do metronidazol é endotérmico com favorecimento entrópico, e que a adição de metanol e etanol tem um efeito positivo de cosolvente em misturas intermédias e ricas em água. No que se refere ao parâmetro de solvatação preferencial, os resultados não são totalmente conclusivos, uma vez que, exceto nas misturas intermédias, os valores do parâmetro de solvatação preferencial são inferiores a 0,01, pelo que se conclui que a solvatação preferencial é desprezível.

Referencias

1. C.D. Freeman, N.E. Klutman & K.C. Lamp. Metronidazole: A therapeutic review and update. Drugs, 54(5), 679–708 (1997). Doi: https://doi.org/10.2165/00003495-199754050-00003

2. B. Ursing & C. Kamme. Metronidazole for Crohn´s disease. The Lancet, 305(7910), 775–777 (1975). Doi: https://doi.org/10.1016/S0140-6736(75)92438-1

3. A.E. Gahrouei, S. Vakili, A. Zandifar & S. Pourebrahimi. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). Environ. Res., 252(Part 3), 119029 (2024). Doi: https://doi.org/10.1016/j.envres.2024.119029

4. L.J. Suárez, R.M. Arce, C. Gonçalves, C.P. Furquim, N.C. Dos Santos, B. Retamal-Valdes & M. Feres. Metronidazole may display anti-inflammatory features in periodontitis treatment: A scoping review. Mol. Oral Microbiol., 39(4), 240–259 (2024). Doi: https://doi.org/10.1111/omi.12459

5. A. Pobudkowska, U. Domańska, B.A. Jurkowska & K. Dymczuk. Solubility of pharmaceuticals in water and alcohols. Fluid Phase Equilib., 392, 56–64 (2015). Doi: https://doi.org/10.1016/j.fluid.2015.02.018

6. A.K. Shah & S.A. Agnihotri. Recent advances and novel strategies in pre-clinical formulation development: An overview. J. Control. Release, 156(3), 281–296 (2011). Doi: https://doi.org/10.1016/j.jconrel.2011.07.003

7. J. Alsenz & M. Kansy. High throughput solubility measurement in drug discovery and development. Adv. Drug Deliv. Rev., 59(7), 546–567 (2007). Doi: https://doi.org/10.1016/j.addr.2007.05.007

8. E. Strade, D. Kalnina & J. Kulczycka. Water efficiency and safe re-use of different grades of water - Topical issues for the pharmaceutical industry. Water Resour. Ind., 24, 100132 (2020). Doi: https://doi.org/10.1016/j.wri.2020.100132

9. D.J.C. Constable, C. Jimenez-Gonzalez & R.K. Henderson. Perspective on solvent use in the pharmaceutical industry. Org. Process. Res. Dev., 11(1), 133–137 (2007). Doi: https://doi.org/10.1021/op060170h

10. S.S. Tabibian & M. Sharifzadeh. Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol. Renew. Sust. Energ. Rev., 179, 113281 (2023). Doi: https://doi.org/10.1016/j.rser.2023.113281

11. H. Xiao, Y. Feng, W.R.F. Goundry & S. Karlsson. Organic solvent nanofiltration in pharmaceutical applications. Org. Process. Res. Dev., 28(4), 891–923 (2024). Doi: https://doi.org/10.1021/acs.oprd.3c00470

12. A. Dogan, C.C. Eylem & N.E.B. Akduman. Application of green methodology to pharmaceutical analysis using eco-friendly ethanol-water mobile phases. Microchem. J., 157, 104895 (2020). Doi: https://doi.org/10.1016/j.microc.2020.104895

13. E.A. Rashad, S.S. Elsayed, J.J.M. Nasr & F.A. Ibrahim. Factorial design optimized green reversed-phase high-performance liquid chromatography for simultaneous determination of aspirin and clopidogrel in pharmaceutical tablets. Microchem. J., 190, 108610 (2023). Doi: https://doi.org/10.1016/j.microc.2023.108610

14. M.A.A. Fakhree, D.R. Delgado, F. Martínez & A. Jouyban. The importance of dielectric constant for drug solubility prediction in binary solvent mixtures: electrolytes and zwitterions in water + etha-nol. AAPS PharmSciTech, 11(4), (2010) 1726–1729 (2010). Doi: https://doi.org/10.1208/S12249-010-9552-3

15. T.A. Ahmed, K.M. El-Say, O.A.A. Ahmed & A.S. Zidan. Sterile dosage forms loaded nanosystems for parenteral, nasal, pulmonary and ocular administration. In: A.M. Grumezescu (editor). Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology, Elsevier, 2018, pp. 335–395. Doi: https://doi.org/10.1016/B978-0-12-813629-4.00009-7

16. D.M. Cristancho, D.R. Delgado & F. Martínez. Meloxicam solubility in ethanol+water mixtures according to the extended Hildebrand solubility approach. J. Solution Chem., 42(8), 1706–1716 (2013). Doi: https://doi.org/10.1007/S10953-013-0058-Y.

17. G.R. Rojas, A.F. Rivera & D.R. Delgado. Application of the Extended Hildebrand solubility approach applied to mitomycin C in ethanol+ water mixtures. Ingeniería y Región, 13(1), 149–157 (2015). Doi: https://doi.org/10.25054/22161325.716.

18. D.R. Delgado, C.P. Ortiz, F. Martínez & A. Jouyban. Equilibrium solubility of sulfadiazine in (acetonitrile + ethanol) mixtures: Determination, correlation, dissolution thermodynamics, and preferential solvation. Int. J. Thermophys., 45, 129 (2024). Doi: https://doi.org/10.1007/S10765-024-03405-4

19. I. Nyamba, C.B. Sombié, M. Yabré, H. Zimé-Diawara, J. Yaméogo, S. Ouédraogo, A. Lechanteur, R. Semdé & B. Evrard. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur. J. Pharm. Biopharm., 204, 114513 (2024). Doi: https://doi.org/10.1016/j.ejpb.2024.114513

20. A. Aydi, C. Ayadi, K. Ghachem, A.Z. Al-Khazaal, D.R. Delgado, M. Alnaief & L. Kolsi. Solubility, solution thermodynamics, and preferential solvation of amygdalin in ethanol + water solvent mix-tures. Pharmaceuticals, 13(11), 395 (2020). Doi: https://doi.org/10.3390/ph13110395

21. M. Khoubnasabjafari, D.R. Delgado, F. Martinez, A. Jouyban & W.E. Acree. Predicting the solubility, thermodynamic properties and preferential solvation of sulphamethazine in {acetonitrile + water} mixtures using a minimum number of experimental data points. Phys. Chem. Liq., 59(3), 400–411 (2021). Doi: https://doi.org/10.1080/00319104.2020.1731812

22. R. V. Mantri, R. Sanghvi & H.J. Zhu. Solubility of pharmaceutical solids. In: Y. Qiu, Y. Chen, G.G.Z. Zhang, L. Yu & R.V. Mantri. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, 2nd ed., Academic Press, 2017, pp. 3–22. Doi: https://doi.org/10.1016/B978-0-12-802447-8.00001-7

23. K.T. Savjani, A.K. Gajjar & J.K. Savjani. Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, 2012, 195727 (2012). Doi: https://doi.org/10.5402/2012/195727

24. J. Tovar-Amézquita, C. Rincón-Guio, F.E. Torres-Suarez, M.M. Florez, C.P. Ortiz, F. Martinez & D.R. Delgado. Thermodynamic assessment of the pyrazinamide dissolution process in some organic solvents. Molecules, 29(21), 5089 (2024). Doi: https://doi.org/10.3390/molecules29215089

25. C.P. Ortiz, D.I. Caviedes-Rubio, F. Martinez & D.R. Delgado. Solubility of sulfamerazine in acetonitrile + ethanol cosolvent mixtures: Thermodynamics and modelling. Molecules, 29(22), 5294 (2024). Doi: https://doi.org/10.3390/molecules29225294

26. D.R. Delgado, J.K. Castro-Camacho, C.P. Ortiz, D.I. Caviedes-Rubio & F. Martinez. Dissolution thermodynamics of the solubility of sulfamethazine in (acetonitrile + 1-propanol) mixtures. Pharmaceuticals, 17(12), 1594 (2024). Doi: https://doi.org/10.3390/ph17121594

27. D.A. Rivas-Ozuna, C.P. Ortiz, D.R. Delgado & F. Martínez. Solubility and preferential solvation of pyrazinamide in some aqueous-cosolvent mixtures at 298.15 K. Int. J. Thermophys., 45, 39 (2024). Doi: https://doi.org/10.1007/S10765-023-03318-8

28. Y. Marcus. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq., 140, 61–67 (2008). Doi: https://doi.org/10.1016/j.molliq.2008.01.005

29. Y. Marcus. Preferential solvation in mixed solvents. 15. Mixtures of acetonitrile with organic solvents. J. Chem. Thermodyn., 135, 55–59 (2019). Doi: https://doi.org/10.1016/j.jct.2019.03.019

30. G. Yu, C. Chen, Y. Xie, W. Yuan, Y. Zhang & J. Chen. Solubility measurement, correlation, thermodynamic properties, and solvent effect of metronidazole in seven pure solvents and two binary solvent systems. J. Chem. Thermodyn., 203, 107430 (2025). Doi: https://doi.org/10.1016/j.jct.2024.107430

31. D.R. Delgado & F. Martínez. Solution thermodynamics of sulfadiazine in some ethanol + water mixtures. J. Mol. Liq., 187, 99–105 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.06.011

32. D.R. Delgado & F. Martínez. Thermodynamic analysis of the solubility of propranolol-HCl in ethanol + water mixtures. Lat. Am. J. Pharm., 30(1), 89–95 (2011). URL: https://www.latamjpharm.org/resumenes/30/1/LAJOP_30_1_1_13.pdf

33. D.R. Delgado & F. Martínez. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib., 360, 88–96 (2013). Doi: https://doi.org/10.1016/j.fluid.2013.09.018

34. D.R. Delgado & F. Martínez. Solution thermodynamics of sulfadiazine in some ethanol + water mixtures. J. Mol. Liq., 187, 99–105 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.06.011

35. D.R. Delgado & F. Martínez. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib., 379, 128–138 (2014). Doi: https://doi.org/10.1016/j.fluid.2014.07.013

36. D.R. Delgado & F. Martínez. Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures. Phys. Chem. Liq., 53, 293–306 (2015). Doi: https://doi.org/10.1080/00319104.2014.961191

37. D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M. Peña, O.A. Almanza, F. Martínez & A. Jouyban. Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures. J. Mol. Liq., 271, 522–529 (2018). Doi: https://doi.org/10.1016/j.molliq.2018.09.026

38. D.R. Delgado & F. Martínez. Thermodynamic study of the solubility of sodium sulfadiazine in some ethanol + water cosolvent mixtures. Vitae, 17(2), 191–198 (2010). Doi: https://doi.org/10.17533/udea.vitae.6344

39. M.A. Ruidiaz, D.R. Delgado & F. Martínez. Correlating the solubility of indomethacin in 1,4-dioxane + water mixtures by means of the Jouyban-Acree model. Rev. Colomb. Cienc. Quím. Farm., 39(2), 211–226 (2010). URL: http://www.scielo.org.co/pdf/rccqf/v39n2/v39n2a07.pdf

40. G.A. Rodríguez, D.R. Delgado & F. Martínez. Preferential solvation of indomethacin and naproxen in ethyl acetate + ethanol mixtures according to the IKBI method. Phys. Chem. Liq., 52(4), 533–545 (2014). Doi: https://doi.org/10.1080/00319104.2013.842474

41. D.R. Delgado & F. Martínez. Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. J. Mol. Liq., 193, 152–159 (2014). Doi: https://doi.org/10.1016/j.molliq.2013.12.021

42. D.R. Delgado, E.F. Vargas & F. Martínez. Preferential solvation of xylitol in ethanol + water cosolvent mixtures according to the IKBI and QLQC methods. Rev. Colomb. Quím., 42(1), 59–66 (2013). URL: http://www.scielo.org.co/pdf/rcq/v42n1/v42n1a08.pdf

43. D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban & W.E. Acree. Solution thermo-dynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J. Chem. Thermodyn., 97, 264–276 (2016). Doi: https://doi.org/10.1016/j.jct.2016.02.002

44. A. Aydi, C.P. Ortiz, D.I. Caviedes-Rubio, C. Ayadi, S. Hbaieb & D.R. Delgado. Solution thermody-namics and preferential solvation of sulfamethazine in ethylene glycol + water mixtures. J. Taiwan Inst. Chem. Eng., 118, 68–77 (2021). Doi: https://doi.org/10.1016/j.jtice.2020.12.031

45. A.F.M. Barton. CRC Handbook of Solubility Parameters and other Cohesion Parameters, 2nd ed. CRC Press, Boca Raton (FL), 1991. Doi: https://doi.org/10.1201/9781315140575

46. R.R. Krug, W.G. Hunter & R.A. Grieger. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J. Phys. Chem., 80(21), 2335–2341 (1976). Doi: https://doi.org/10.1021/j100562a006

47. R.R. Krug, W.G. Hunter & R.A. Grieger. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem., 80(21), 2341–2351 (1976). Doi: https://doi.org/10.1021/j100562a007

48. Y.L. Cuellar-Carmona, N.E. Cerquera, R.E. Cardenas-Torres, C.P. Ortiz, F. Martínez & D.R. Delgado. Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models. Braz. J. Chem. Eng., 1–14 (2024). Doi: https://doi.org/10.1007/S43153-024-00489-1

49. D.I. Caviedes-Rubio, C.P. Ortiz, F. Martinez & D.R. Delgado. Thermodynamic assessment of triclocarban dissolution process in N-methyl-2-pyrrolidone + water cosolvent mixtures. Molecules, 28(20), 7216 (2023). Doi: https://doi.org/10.3390/molecules28207216

50. D.R. Delgado, A. Romdhani & F. Martínez. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat. Am. J. Pharm., 30(10), 2024–2054 (2011). URL: https://www.latamjpharm.org/resumenes/30/10/LAJOP_30_10_1_23.pdf

51. M.A. Parra, N.E. Cerquera, C.P. Ortiz, R.E. Cárdenas-Torres, D.R. Delgado, M.Á. Peña & F. Martínez. Solubility of ciprofloxacin in different solvents at several temperatures: Measurement, correlation, thermodynamics and Hansen solubility parameters. J. Taiwan Inst. Chem. Eng., 150, 105028 (2023). Doi: https://doi.org/10.1016/j.jtice.2023.105028

52. E.A. Cantillo, D.R. Delgado & F. Martinez. Solution thermodynamics of indomethacin in ethanol + propylene glycol mixtures. J. Mol. Liq., 181, 62–67 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.02.008

53. C.P. Ortiz, R.E. Cardenas-Torres, M. Herrera & D.R. Delgado. Numerical analysis of sulfamerazine solubility in acetonitrile + 1-propanol cosolvent mixtures at different temperatures. Sustainability (Basel), 15(8), 6596 (2023). Doi: https://doi.org/10.3390/su15086596

54. D.R. Delgado, E.F. Vargas & F. Martinez. Thermodynamic study of the solubility of procaine HCl in some ethanol + water cosolvent mixtures. J. Chem. Eng. Data, 55(8), 2900–2904 (2010). Doi: https://doi.org/10.1021/JE900958Z

55. D.R. Delgado & F. Martínez. Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J. Solution Chem., 43(5), 836–852 (2014). Doi: https://doi.org/10.1007/S10953-014-0169-0

56. G.L. Perlovich, S.V. Kurkov & A. Bauer-Brandl. Thermodynamics of solutions: II. Flurbiprofen and diflunisal as models for studying solvation of drug substances. Eur. J. Pharm. Sci., 19(5), (2003) 423–432 (2003). Doi: https://doi.org/10.1016/S0928-0987(03)00145-3

57. G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.J. Schaper & O.A. Raevsky. Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media. J. Chem. Thermodyn., 69, 56–65 (2014). Doi: https://doi.org/10.1016/j.jct.2013.09.027

58. G.L. Perlovich, S.V. Kurkov & A. Bauer-Brandl. The difference between partitioning and distribu-tion from a thermodynamic point of view: NSAIDs as an example. Eur. J. Pharm. Sci., 27(2-3), 150–157 (2006). Doi: https://doi.org/10.1016/j.ejps.2005.09.003

59. G.L. Perlovich, S.V. Kurkov, A.N. Kinchin & A. Bauer-Brandl. Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs. Eur. J. Pharm. Biopharm., 57(2), 411–420 (2004). Doi: https://doi.org/10.1016/j.ejpb.2003.10.021

60. J.H. Hildebrand, J.M. Prausnitz & R.L. Scott. Regular and related solutions; the solubility of gases, liquids, and solids. Van Nostrand Reinhold Co, Minnesota, 1970.

61. C. Bustamante & P. Bustamante. Nonlinear enthalpy-entropy compensation for the solubility of phenacetin in dioxane-water solvent mixtures. J. Pharm. Sci., 85(10), 1109–1111 (1996). Doi: https://doi.org/10.1021/js950497o

62. F. Martínez, M.Á. Peña & P. Bustamante. Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures. Fluid Phase Equilib., 308(1-2), 98–106 (2011). Doi: https://doi.org/10.1016/j.fluid.2011.06.016

63. K. Sharp. Entropy—enthalpy compensation: Fact or artifact? Protein Sci., 10(3), 661–667 (2001). Doi: https://doi.org/10.1110/ps.37801

64. J.J. Agredo-Collazos, C.P. Ortiz, N.E. Cerquera, R.E. Cardenas-Torres, D.R. Delgado, M.Á. Peña & F. Martínez. Equilibrium solubility of triclocarban in (cyclohexane + 1,4-dioxane) mixtures: Determination, correlation, thermodynamics and preferential solvation. J. Solution Chem., 51(12), 1603–1625 (2022). Doi : https://doi.org/10.1007/S10953-022-01209-4

65. R.E. Cárdenas-Torres, C.P. Ortiz, W.E. Acree, A. Jouyban, F. Martínez & D.R. Delgado. Thermodynamic study and preferential solvation of sulfamerazine in acetonitrile + methanol cosolvent mixtures at different temperatures. J. Mol. Liq., 349, 118172 (2022). Doi: https://doi.org/10.1016/j.molliq.2021.118172

66. C.P. Ortíz, R.E. Cardenas-Torres, D.I. Caviedes-Rubio, S.D.J. Polania-Orozco & D.R. Delgado. Thermodynamic analysis and preferential solvation of sulfanilamide in different cosolvent mixtures. Phys. Chem. Liq., 60(1), 9–24 (2022). Doi: https://doi.org/10.1080/00319104.2021.1888382

67. Y. Marcus. Preferential solvation of drugs in binary solvent mixtures. Pharm. Anal. Acta, 8(1), 1000537 (2017). Doi: https://doi.org/10.4172/2153-2435.1000537

68. Y. Marcus. Solvent Mixtures: Properties and Selective Solvation. CRC Press, Boca Raton (FL), 2002.

69. Y. Marcus. Preferential solvation in mixed solvents. In: P.E. Smith, E. Matteoli & J.P. O'Connell (editors). Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics. CRC Press, Boca Raton (FL), 2013, pp. 65–92.

70. A.K. Nain. Inversion of the Kirkwood-Buff theory of solutions: Application to tetrahydrofuran + aromatic hydrocarbon binary liquid mixtures. J. Solution Chem., 37(11), 1541–1559 (2008). Doi: https://doi.org/10.1007/S10953-008-9326-7

71. Y. Marcus. The Properties of Solvents. John Wiley & Sons Ltd, New York (NY), 1999.

72. C. Coquelet, A. Valtz & D. Richon. Volumetric properties of water + monoethanolamine + methanol mixtures at atmospheric pressure from 283.15 to 353.15 K. J. Chem. Eng. Data, 50(2), 412–418 (2005). Doi: https://doi.org/10.1021/je049691v

73. M.J. Kamlet & R.W. Taft. The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc., 98(2), 377–383 (1976). Doi: https://doi.org/10.1021/ja00418a009

Cómo citar

APA

Escobar Fiesco, G. F., Caviedes-Rubio, D. I., Ortiz, C. P., Quintero Guerrero, Y., Cerquera, N. E., Rincón-Guio, C., Cardenas-Torres, R. E. & Delgado, D. R. (2025). Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures. Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(2), 345–363. https://doi.org/10.15446/rcciquifa.v54n2.121131

ACM

[1]
Escobar Fiesco, G.F., Caviedes-Rubio, D.I., Ortiz, C.P., Quintero Guerrero, Y., Cerquera, N.E., Rincón-Guio, C., Cardenas-Torres, R.E. y Delgado, D.R. 2025. Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures. Revista Colombiana de Ciencias Químico-Farmacéuticas. 54, 2 (jul. 2025), 345–363. DOI:https://doi.org/10.15446/rcciquifa.v54n2.121131.

ACS

(1)
Escobar Fiesco, G. F.; Caviedes-Rubio, D. I.; Ortiz, C. P.; Quintero Guerrero, Y.; Cerquera, N. E.; Rincón-Guio, C.; Cardenas-Torres, R. E.; Delgado, D. R. Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures. Rev. Colomb. Cienc. Quím. Farm. 2025, 54, 345-363.

ABNT

ESCOBAR FIESCO, G. F.; CAVIEDES-RUBIO, D. I.; ORTIZ, C. P.; QUINTERO GUERRERO, Y.; CERQUERA, N. E.; RINCÓN-GUIO, C.; CARDENAS-TORRES, R. E.; DELGADO, D. R. Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 54, n. 2, p. 345–363, 2025. DOI: 10.15446/rcciquifa.v54n2.121131. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/121131. Acesso em: 28 dic. 2025.

Chicago

Escobar Fiesco, German Fabian, Diego Ivan Caviedes-Rubio, Claudia Patricia Ortiz, Yaqueline Quintero Guerrero, Néstor Enrique Cerquera, Cristian Rincón-Guio, Rossember Edén Cardenas-Torres, y Daniel Ricardo Delgado. 2025. «Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures». Revista Colombiana De Ciencias Químico-Farmacéuticas 54 (2):345-63. https://doi.org/10.15446/rcciquifa.v54n2.121131.

Harvard

Escobar Fiesco, G. F., Caviedes-Rubio, D. I., Ortiz, C. P., Quintero Guerrero, Y., Cerquera, N. E., Rincón-Guio, C., Cardenas-Torres, R. E. y Delgado, D. R. (2025) «Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures», Revista Colombiana de Ciencias Químico-Farmacéuticas, 54(2), pp. 345–363. doi: 10.15446/rcciquifa.v54n2.121131.

IEEE

[1]
G. F. Escobar Fiesco, «Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures», Rev. Colomb. Cienc. Quím. Farm., vol. 54, n.º 2, pp. 345–363, jul. 2025.

MLA

Escobar Fiesco, G. F., D. I. Caviedes-Rubio, C. P. Ortiz, Y. Quintero Guerrero, N. E. Cerquera, C. Rincón-Guio, R. E. Cardenas-Torres, y D. R. Delgado. «Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 54, n.º 2, julio de 2025, pp. 345-63, doi:10.15446/rcciquifa.v54n2.121131.

Turabian

Escobar Fiesco, German Fabian, Diego Ivan Caviedes-Rubio, Claudia Patricia Ortiz, Yaqueline Quintero Guerrero, Néstor Enrique Cerquera, Cristian Rincón-Guio, Rossember Edén Cardenas-Torres, y Daniel Ricardo Delgado. «Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures». Revista Colombiana de Ciencias Químico-Farmacéuticas 54, no. 2 (julio 8, 2025): 345–363. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/121131.

Vancouver

1.
Escobar Fiesco GF, Caviedes-Rubio DI, Ortiz CP, Quintero Guerrero Y, Cerquera NE, Rincón-Guio C, Cardenas-Torres RE, Delgado DR. Thermodynamic analysis and preferential solvation of metronidazole solubility in methanol-water and ethanol-water cosolvent mixtures at different temperatures. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 8 de julio de 2025 [citado 28 de diciembre de 2025];54(2):345-63. Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/121131

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

284

Descargas

Los datos de descargas todavía no están disponibles.