Publicado
In vitro evaluation of 2-bromo-N-phenylacetamide for antifungal activity against Candida glabrata oral cavity isolates
Evaluación in vitro de 2-bromo-N-fenilacetamida para actividad antifúngica contra aislados de Candida glabrata de la cavidad oral
Avaliação in vitro da atividade antifúngica da 2-bromo-N-fenilacetamida contra isolados de Candida glabrata da cavidade oral
DOI:
https://doi.org/10.15446/rcciquifa.v54n2.121138Palabras clave:
Oral candidiasis, Candida glabrata, acetanilide, mycobioma (en)Candidiasis oral, Candida glabrata, acetanilida, micobioma (es)
Candidíase oral, Candida glabrata, acetanilida, micobioma (pt)
Descargas
Objective: To evaluate the antifungal potential of 2‑bromo‑N‑phenylacetamide (A1Br) against Candida glabrata strains isolated from the oral cavity. Methods: Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of A1Br were determined by the broth microdilution technique and via the checkerboard method for pharmacological interaction assessment. Micromorphological changes induced by the compound and the effect of its combination with standard antifungals (nystatin and miconazole) were also evaluated using the checkerboard method, with determination of the fractional inhibitory concentration index (FICI). Results: A1Br showed an MIC of 16 μg/mL and an MFC of 32–64 μg/mL against all tested C. glabrata strains, indicating predominantly fungicidal activity. The A1Br–nystatin combination exhibited antagonism (FICI = 4.5), whereas the A1Br–miconazole combination showed indifference (FICI = 1.25). Micromorphological analysis revealed reduction of all fungal structures, achieving 100% inhibition at 4× MIC. Conclusion: 2‑Bromo‑N‑phenylacetamide demonstrated excellent antifungal activity against C. glabrata and emerges as a potential drug candidate.
Objetivo: Evaluar el potencial antifúngico de la 2‑bromo‑N‑fenilacetamida (A1Br) frente a cepas de Candida glabrata aisladas de la cavidad oral. Métodos: Se determinaron la concentración inhibitoria mínima (CIM) y la concentración fungicida mínima (CFM) de A1Br mediante la técnica de microdilución en caldo y mediante el método de checkerboard para la evaluación de interacciones farmacológicas. También se evaluaron los cambios micromorfológicos inducidos por el compuesto y el efecto de su asociación con antifúngicos estándar (nistatina y miconazol) mediante el método de checkerboard, con la determinación del índice de concentración inhibitoria fraccionada (FICI). Resultados: A1Br presentó una CIM de 16 μg/mL y una CFM de 32–64 μg/mL en todas las cepas de C. glabrata evaluadas, evidenciando una acción predominantemente fungicida. La combinación A1Br–nistatina mostró antagonismo (FICI = 4,5), mientras que la combinación A1Br–miconazol demostró indiferencia (FICI = 1,25). El análisis micromorfológico reveló reducción de todas las estructuras fúngicas, alcanzando un 100 % de inhibición a 4× CIM. Conclusión: La 2‑bromo‑N‑fenilacetamida demostró excelente actividad antifúngica contra C. glabrata y se perfila como un posible candidato a fármaco.
Objetivo: Avaliar o potencial antifúngico da 2-bromo-N-fenilacetamida (A1Br) contra cepas de Candida glabrata isoladas da cavidade oral. Métodos: A concentração inibitória mínima (CIM) e a concentração fungicida mínima (CFM) da A1Br foram determinadas pela técnica de microdiluição em caldo e pelo método checkerboard para avaliação da interação farmacológica. As alterações micromorfológicas induzidas pelo composto e o efeito de sua combinação com antifúngicos padrão (nistatina e miconazol) também foram avaliados pelo método checkerboard, com determinação do índice de concentração inibitória fracionada (ICF). Resultados: A1Br apresentou uma CIM de 16 μg/mL e uma CFM de 32–64 μg/mL contra todas as cepas de C. glabrata testadas, indicando atividade predominantemente fungicida. A combinação A1Br-nistatina apresentou antagonismo (FICI = 4,5), enquanto a combinação A1Br-miconazol demonstrou indiferença (FICI = 1,25). A análise micromorfológica revelou redução de todas as estruturas fúngicas, atingindo 100% de inibição a 4 × CIM. Conclusão: A 2-Bromo-N-fenilacetamida demonstrou excelente atividade antifúngica contra C. glabrata e surge como um potencial candidato a fármaco.
Referencias
1. K.P. Ng, C.S. Kuan, H. Kaur, S.L. Na, N. Ativa & R.D. Velayuthan. Candida species epidemiology 2000-2013: A laboratory-based report. Trop. Med. Int. Health, 20(11), 1447–1453 (2015). Doi: https://doi.org/10.1111/tmi.12577
2. F. Lamoth, S.R. Lockhart, E.L. Berkow & T. Calandra. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother., 73(suppl_1): i4–i13 (2018). Doi: https://doi.org/10.1093/jac/dkx444
3. K.V. Martins & S.M.L. Gontijo. Treatment of denture stomatitis: Literature review. Rev. Bras. Odontol., 74(3), 215–220 (2017). Doi: https://doi.org/10.18363/rbo.v74n3.p.215
4. Brasil, Ministério da Saúde. Pesquisa Nacional de Saúde Bucal – 2010: Resultados principais. Brasília, 2014; 118 p. URL: https://bvsms.saude.gov.br/bvs/publicacoes/pesquisa_nacional_saude_bucal_sbbrasil_2010.pdf. Accessed 02 July 2024
5. S. Brunke & B. Hube. Two unlike cousins: Candida albicans and C. glabrata infection strategies.Cell. Microbiol., 15(5), 701–708 (2013). Doi: https://doi.org/10.1111/cmi.12091
6. T.Y. Hosida, T.P. Cavazana, M. Henriques, J.P. Pessan, A.C. Botazzo-Delbem & D.R. Monteiro. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation. Mycoses, 61(4), 270–278 (2018). Doi: https://doi.org/10.1111/myc.12738
7. S. Tati, P. Davidow, A. McCall, E. Hwang-Wong, I.G. Rojas, B. Cormack & M. Edgerton. Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathogens, 12(3), e1005522 (2016). Doi: https://doi.org/10.1371/journal.ppat.1005522
8. K. Miranda-Cadena, C. Marcos-Arias, E. Mateo, J.M. Aguirre, G. Quindós & E. Eraso. Prevalence and antifungal susceptibility profiles of Candida glabrata, Candida parapsilosis and their close-related species in oral candidiasis. Arch. Oral Biol., 95, 100–107 (2018). Doi: https://doi.org/10.1016/j.archoralbio.2018.07.017
9. A. Sharifzadeh, A.R. Khosravi, H. Shokri, F. Jammania, Hajjabdolbaghi & I.A. Tamani. Oral microflora and their relation to risk factors in HIV+ patients with oropharyngeal candidiasis. J. Mycol. Med., 23(2), 105–112 (2013). Doi: https://doi.org/10.1016/j.mycmed.2013.02.001
10. M.S. Almutairi, A.S. Zakaria, R.I. Al-Wabli, I.H. Joe, A.S. Abdelhameed & M.I. Attia. Synthesis, spectroscopic identification and molecular docking of certain N-(2-{[2-(1H-Indol-2-ylcarbonyl)hydrazinyl](oxo)acetyl}phenyl)acetamides and N-[2-(2-{[2-(Acetylamino)phenyl](oxo)acetyl}hydrazinyl)-2-oxoethyl]-1H-indole-2 carboxamides: New antimicrobial agents. Molecules, 23(5), 1043 (2018). Doi: https://doi.org/10.3390/molecules23051043
11. I.N. Peixoto, H.S.D. Souza, B.F. Lira, D.F. Silva, E.O. Lima, J.M. Barbosa-Filho & P.F. Athayde Filho. Synthesis and antifungal activity against Candida strains of mesoionic system derived from 1,3-thyazolium-5-thiolate. J. Braz. Chem. Soc., 27(10), 1807–1813 (2016). Doi: https://doi.org/10.5935/0103-5053.20160063
12. D.M. Kristensen, S. Mazud-guittot, P. Guadriault, L. Lesné, T. Serrano, K.M. Main & B. Jégou. Analgesic use – prevalence, biomonitoring and endocrine and reproductive effects. Nat. Rev. Endocrinol., 12(7), 381–393 (2016). Doi: https://doi.org/10.1038/nrendo.2016.55
13. S. Kumar, S.M. Lim, K. Ramanasamy, V. Mani, S.A. Shah & B. Narasimhan. Bis-pyrimidine acetamides: Design, synthesis and biological evaluation. Chem. Central J., 11, 80 (2017). Doi: https://doi.org/10.1186/s13065-017-0312-2
14. L. Cordeiro, H. Diniz-Neto, P. Figueiredo, H. Souza, A. Sousa, F. Andrade-Júnior, et al. Potential of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide against Klebsiella pneumoniae and in vitro toxicity analysis. Molecules, 25(17), 3959 (2020). Doi: https://doi.org/10.3390/molecules25173959
15. L.V. Cordeiro, H.D.S. Souza, A.P. Sousa, F.P. Andrade Júnior, P.T.R. Figueiredo, R.F. Oliveira, P.F. Athayde Filho, A.A. Oliveira-Filho & E.O. Lima. Effect of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide in combination with antibacterial drugs against Klebsiella pneumoniae. An. Acad. Bras. Cienc., 95(2), e20210141 (2023). Doi: https://doi.org/10.1590/0001-3765202320210141
16. B.A. Teixeira, H.D.S. Souza, G.F. Fiss, P.F. Athayde-Filho, P.L. Nogueira, D.N. Alves, R.D. Castro, F.P. Andrade Júnior, B.K.S. Farias & E.O. Lima. Fungicidal and antibiofilm activities of 2-Bromo-N-phenylacetamide against fluconazole-resistant Candida spp.: A promising antifungal agent. Revista Observatorio de La Economía Latinoamericana, 21(12), 24080–24101 (2023). Doi: https://doi.org/10.55905/oelv21n12-035
17. C.P. Kaushik, R. Luxm, M. Kumar, D. Singh, K. Krishan & A. Pahwa. One-pot facile synthesis, crystal structure and antifungal activity of 1,2,3-triazoles bridged with amine-amide. Synth. Commun., 49(1), 118–128 (2019). Doi: https://doi.org/10.1080/00397911.2018.1544371
18. R. Cleeland & E. Squires. Evaluation of new antimicrobials “in vitro” and in experimental animal infections. In: V.M.D. Lorian (editor). Antibiotics in Laboratory Medicine. Williams & Wilkins, Baltimore (MD), 1991; pp. 739–788.
19. P.F.C. Nascimento, A.C. Nascimento, C.S. Rodrigues, A.R. Antoniolli, M.P.O. Santos, A.M. Barbosa Júnior & R.C. Trindade. Atividade antimicrobiana dos óleos essenciais: uma abordagem multifatorial dos métodos. Rev. Bras. Farmacogn., 17(1), 108–113 (2007). Doi: https://doi.org/10.1590/S0102-695X2007000100020
20. F.O. Pereira, J.M. Mendes, I.O. Lima, K.S.L. Mota, W.A. Oliveira & E.O. Lima. Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis. Pharm. Biol., 53(2), 228–234 (2015). Doi: https://doi.org/10.3109/13880209.2014.913299
21. CLSI. M27 Reference method for broth dilution antifungal susceptibility testing of yeasts, 4th ed. Clinical and Laboratory Standards Institute, Wayne (PA), 2017; 13 p. URL: https://clsi.org/media/1461/m27a3_sample.pdf. Accessed 2 July 2024.
22. F. Hadacek & H. Greger. Testing of antifungal natural products: methodologies, comparatibility of results and assay choice. Phytochem. Anal., 11(3), 137–147 (2000). Doi: https://doi.org/10.1002/(sici)1099-1565(200005/06)11:3<137::aid-pca514>3.0.co;2-i
23. I.C.M. Freire, A.L.A.L. Pérez, A.M.R. Cardoso, B.A.L.A. Mariz, L.F.D. Almeida, Y.W. Cavalcanti & W.W.N. Padilha. Atividade antibacteriana de óleos essenciais sobre Streptococcus mutans e Staphylococcus aureus. Rev. Bras. Pl. Med. (Campinas), 16(2, Supl. 1), 372–377 (2014). Doi: https://doi.org/10.1590/1983-084X/12_053
24. F.B. Holetz, M.J. Homes, C.C. Lee & G. Steventon. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz (Rio de Janeiro), 97(7), 1027–1031 (2002). Doi: https://doi.org/10.1590/S0074-02762002000700017
25. A. Sartoratto, A.L.M. Machado, C. Delarmelina, G.M. Figueira, M.C.T. Duarte & V.L.G. Rehder. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol., 35(4), 275–280 (2004). Doi: https://doi.org/10.1590/S1517-83822004000300001
26. P.J. Houghton, M.J. Howes, C.C. Lee & G. Steventon. Uses and abuses of in vitro tests in ethnopharmacology: Visualizing an elephant. J. Ethnopharmacol., 110(3), 391–400 (2007). Doi: https://doi.org/10.1016/j.jep.2007.01.032
27. N.S. Ncube, A.J. Afolayan & A.I. Okoh. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr. J. Biotechnol., 7(12), 1797–1806 (2008). Doi: https://doi.org/10.5897/ajb07.613
28. A.A. Saddiq & S.A. Khayyat. Chemical and antimicrobial studies of monoterpene: Citral. Pestic. Biochem. Physiol., 98(1), 89–93 (2010). Doi: https://doi.org/10.1016/j.pestbp.2010.05.004
29. R.R. Hafidh, A.S. Abdulamir, L.S. Vern, F. Abu-Bakar, F. Abas, F. Jahanshiri & Z. Sekawi. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol. J., 5, 96–106 (2011). Doi: https://doi.org/10.2174/1874285801105010096
30. L.A. Alves, I.A. Freires, T.M.P.A. Souza, E.O. Lima & R.D. Castro. Erect of Schinus terebinthifolius on Candida albicans growth kinetics, cell wall formation and micromorphology. Acta Odontol. Scand., 71(3-4), 965–971 (2013). Doi: https://doi.org/10.3109/00016357.2012.741694
31. N. Dutta, S.G. Dastidar, A. Kumar, K. Mazumar, R. Ray & N.A. Chakrabhakrabart. Antimycobacterial actibity of the antiinflamatory agent diclofenac sodium and its synergism with streptoyclin. Braz. J. Microbiol., 35(4), 316–323 (2004). Doi: https://doi.org/10.1590/S1517-83822004000300009
32. R.L. White, D.S. Burgess, M. Mandruru & J.A. Bosso. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard and E-test. Antimicrob. Agents Chemother., 40(8), 1914–1918 (1996). Doi: https://doi.org/10.1128/aac.40.8.1914
33. R.C. Bonapace, A.J. Bosso, V.L. Friedrich & L.R. White. Comparison of methods of interpretation of checkerboard synergy testing. Diagn. Microbiol. Infect. Dis., 44(4), 363–366 (2002). Doi: https://doi.org/10.1016/s0732-8893(02)00473-x
34. J.A. Moody. Synergism testing: Broth microdilution checkerboard and broth macrodilution methods. In: H.D. Isenberg (editor). Clinical Microbiology Procedures Handbook. American Society for Microbiology, Washington DC, 1992.
35. R.E. Lewis, D.J. Diekema, A.S. Messer, M.A. Pfaller & M.E. Klepser. Comparison of Etest, chequerboard dilution and time–kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J. Antimicrob. Chemother., 49(2), 345–351 (2002). Doi: https://doi.org/10.1093/jac/49.2.345
36. J. Correa-Royero, E.V. Tangarif, C. Durán, E. Stashenko & A. Mesa-Arango. In vitro antifungal activity and cytotoxic effect of essential oils and extracts of medicinal and aromatic plants against Candida krusei and Aspergillus fumigatus. Rev. Bras. Farmacogn., 20(5), 734–741 (2010). Doi: https://doi.org/10.1590/S0102-695X2010005000021
37. L.A. Trindade, J.A. Oliveira, R.D. Castro & E.O. Lima. Amides derived from vanillic acid: Coupling reactions, antimicrobial evaluation, and molecular docking. BioMed Res. Int., 19(9), 2223–2231 (2015). Doi: https://doi.org/10.1155/2019/9209676
38. V. Pejchal, M. Pejchalová & Z. Růžičková. Synthesis, structural characterization, antimicrobial and antifungal activity of substituted 6-fluorobenzo[d]thiazole amides. Med. Chem. Res., 24(10), 3660–3670 (2015). Doi: https://doi.org/10.1007/s00044-015-1410-0
39. B.K. Çavuşoğlu, L. Yurttaş & Z. Cantürk. The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against Candida species. Eur. J. Med. Chem., 144, 255–261 (2018). Doi: https://doi.org/10.1016/j.ejmech.2017.12.020
40. F.P. Andrade Júnior, R.G. Gouveia, C.I.S. Medeiros, B.A. Teixeira, B.K.S. Farias, N.R. Oliveira, D.F. Silva & E.O. Lima. Antifungal activity of citronellal against Trichophyton rubrum and its predictive mechanism of action by CYP51 inhibition through molecular docking. Nat. Prod. Res., 38(23), 4125-4133 (2024). Doi: https://doi.org/10.1080/14786419.2023.2277352
41. D. Bardiot, K. Thevissen, K. Brucker, A. Peeters, P. Cos, C.P. Taborda, et al. 2-(2-Oxo-morpholin-3-yl)-acetamide derivatives as broad-spectrum antifungal agents. J. Med. Chem., 58(3), 1502–1512 (2015). Doi: https://doi.org/10.1021/jm501814x
42. F.P. Andrade Júnior, A.P.C. Teixeira, W.A. Oliveira, E.O. Lima & I. O. Lima. Studo da associação do timol com a anfotericina B contra Rhizopus orizae. Periódico Tchê Química 16(31), 156–163 (2019). URL: https://journals.indexcopernicus.com/api/file/viewByFileId/893860
43. F.P. Andrade Júnior, J.P. Sousa, H.D.S. Souza & E.O. Lima. Anti-Trichophyton rubrum potential, association with fluconazole, and mechanism of action of (R)-(+)-citronellal. Nat. Prod. Res., 1-6 (2024). Doi: https://doi.org/10.1080/14786419.2024.2417365
44. L.L.S. Rosa, F.P. Andrade Júnior, L.V. Cordeiro, H.D.S. Souza, P.F. Athayde-Filho, D.D.A. Gadelha, et al. Association study between ceftriaxone and a synthetic amide against strains of Pseudomonas aeruginosa. Braz. J. Biol., 83, e274149 (2023). Doi: https://doi.org/10.1590/1519-6984.274149
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




