Publicado
Bacterial immobilization matrices: a scientometric review
Matrices de inmovilización bacteriana: una revisión cienciométrica
Matrizes de imobilização bacteriana: uma revisão cienciométrica
DOI:
https://doi.org/10.15446/rcciquifa.v54n2.121162Palabras clave:
Bacterial immobilization, matrices for immobilization, scientometrics (en)Inmovilización bacteriana, matrices para inmovilización, cienciometría (es)
Imobilização bacteriana, matrizes para imobilização, cienciometria (pt)
Descargas
Introduction: This study analyzes the evolution of research on bacterial immobilization matrices using a scientometric approach, identifying trends in scientific production, materials used, characterization methodologies and emerging biotechnological applications. Methodology: To this end, a scientometric review based on PRISMA was carried out, with the search of articles in Scopus and PubMed using terms such as cell immobilization, bacterial y matrix, combined with “AND”. A total of 1,232 publications were identified, of which 94 were selected for analysis after applying filters of relevance and originality. Bibliometric tools were used to assess annual production, international collaboration, and key terms in publications. Results: The results show that scientific output experienced fluctuations between 2019 and 2024, with a drop in 2023, followed by a rebound in 2024. China, India and the United States lead research in this field. Biopolymers such as alginate, chitosan and polyvinyl alcohol are the most researched materials, while lignocellulosic waste is emerging as more sustainable alternatives. In terms of methodologies, the most commonly used include scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). Conclusions: Bacterial immobilization continues to expand, with promising applications in bioremediation and biocatalysis. Diversification in materials and methodologies suggests that multidisciplinary approaches will be critical in the future, so it is recommended to strengthen international collaboration and increase funding in biotechnology to maximize the impact of these technologies.
Introducción: Este estudio analiza la evolución de la investigación sobre matrices de inmovilización bacteriana mediante un enfoque cienciométrico, identificando tendencias en producción científica, materiales utilizados, metodologías de caracterización y aplicaciones biotecnológicas emergentes. Metodología: Para ello, se llevó a cabo una revisión cienciométrica basada en la metodología PRISMA, con la búsqueda de artículos en Scopus y PubMed usando términos como cell immobilization, bacterial y matrix, combinados con “AND”. Se identificaron 1,232 publicaciones, de las cuales 94 fueron seleccionadas para el análisis tras aplicar filtros de pertinencia y originalidad. Se utilizaron herramientas bibliométricas para evaluar la producción anual, la colaboración internacional y los términos clave en las publicaciones. Resultados: Los resultados muestran que la producción científica experimentó fluctuaciones entre 2019 y 2024, con una caída en 2023, seguida de un repunte en 2024. China, India y EE.UU. lideran las investigaciones en este campo. Los biopolímeros como alginato, quitosano y polivinil alcohol son los materiales más investigados, mientras que los residuos lignocelulósicos están emergiendo como alternativas más sostenibles. En cuanto a las técnicas, las más utilizadas incluyen microscopía electrónica de barrido (SEM) y espectroscopía infrarroja (FTIR). Conclusiones: La inmovilización bacteriana sigue en expansión, con aplicaciones prometedoras en bioremediación y biocatálisis. La diversificación en materiales y metodologías sugiere que los enfoques multidisciplinarios serán fundamentales en el futuro, por lo que se recomienda fortalecer la colaboración internacional y aumentar el financiamiento en biotecnología para maximizar el impacto de estas tecnologías.
Introdução: Este estudo analisa a evolução das pesquisas sobre matrizes de imobilização bacteriana utilizando uma abordagem cienciométrica, identificando tendências na produção científica, materiais utilizados, metodologias de caracterização e aplicações biotecnológicas emergentes. Metodologia: Para tanto, foi realizada uma revisão cienciométrica baseada no PRISMA, com a busca de artigos na Scopus e PubMed utilizando termos como imobilização celular, bacteriana e matriz, combinados com "DNA". Foram identificadas 1.232 publicações, das quais 94 foram selecionadas para análise após aplicação de filtros de pertinência e originalidade. Ferramentas bibliométricas foram utilizadas para avaliar a produção anual, a colaboração internacional e os termos-chave nas publicações. Resultados: Os resultados mostram que a produção científica experimentou flutuações entre 2019 e 2024, com queda em 2023, seguida de recuperação em 2024. China, Índia e Estados Unidos lideram pesquisas neste campo. Biopolímeros como alginato, quitosana e álcool polivinílico são os materiais mais pesquisados, enquanto os resíduos lignocelulósicos estão surgindo como alternativas mais sustentáveis. Em termos de metodologias, as mais comumente utilizadas incluem microscopia eletrônica de varredura (MEV) e espectroscopia de infravermelho (FTIR). Conclusão: A imobilização bacteriana continua a se expandir, com aplicações promissoras em biorremediação e biocatálise. A diversificação de materiais e metodologias sugere que abordagens multidisciplinares serão críticas no futuro, por isso é recomendável fortalecer a colaboração internacional e aumentar o financiamento em biotecnologia para maximizar o impacto dessas tecnologias.
Referencias
1. P. Kulkarni, R. Parkale, S. Khare, P. Kumar & N. Arya. Cell Immobilization Strategies for Tissue Engineering: Recent Trends and Future Perspectives. In: A. Tripathi & J.S. Melo (editors). Gels Horizons: From Science to Smart Materials. Springer, Singapore, 2021. Doi: https://doi.org/10.1007/978-981-15-7998-1_2
2. C.M. Leung, P. de Haan, K. Ronaldson-Bouchard, G.-A. Kim, J. Ko, H.S. Rho, Z. Chen, P. Habibovic, N.L. Jeon, S. Takayama, et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers, 2(1), 33 (2022). Doi: https://doi.org/10.1038/s43586-022-00118-6
3. Q. Wei, Y. An, X. Zhao, M. Li & J. Zhang. Three-dimensional bioprinting of tissue-engineered skin: Biomaterials, fabrication techniques, challenging difficulties, and future directions: A review. Int. J. Biol. Macromol., 266(Part 1), 131281 (2024). Doi: https://doi.org/10.1016/j.ijbiomac.2024.131281
4. Y.V. Arias-Andrade, L.A. Veloza & J.C. Sepúlveda-Arias. Nanocompuestos de quitosano aplicados al campo de la medicina regenerativa. Una revisión sistemática. Scientia et Technica, 25(4), 604–615 (2020). Doi: https://doi.org/10.22517/23447214.23411
5. V. Conde-Avila, C. Peña, B. Pérez-Armendáriz, O. Loera, C. Martínez-Valenzuela, J.B. Leyva-Morales, P.d.J. Bastidas-Bastidas, H. Salgado-Lugo & L.D. Ortega-Martínez. Growth, respiratory activity and chlorpyrifos biodegradation in cultures of Azotobacter vinelandii ATCC 12837. AMB Express, 11(1), 177 (2021). Doi: https://doi.org/10.1186/s13568-021-01339-w
6. E.C. Giese. Mining applications of immobilized microbial cells in an alginate matrix: an overview. Rev. Int. Contam. Ambie., 36(3), 775–787 (2020). Doi: https://doi.org/10.20937/rica.53357
7. T.P.C. Ezeorba, E.S. Okeke, M.H. Mayel, C.O. Nwuche & T.C. Ezike. Recent advances in biotechnological valorization of agro-food wastes (AFW): Optimizing integrated approaches for sustainable biorefinery and circular bioeconomy. Bioresour. Technol. Rep., 26, 101823 (2024). Doi: https://doi.org/10.1016/j.biteb.2024.101823
8. M.U. Saeed, N. Hussain, A. Sumrin, A. Shahbaz, S. Noor, M. Bilal, L. Aleya & H.M.N. Iqbal. Microbial bioremediation strategies with wastewater treatment potentialities – A review. Sci. Total Environ., 818, 151754 (2021). Doi: https://doi.org/10.1016/j.scitotenv.2021.151754
9. Y.Y. Yilmaz, E.E. Yalçınkaya, D.O. Demirkol & S. Tımur. 4-aminothiophenol-intercalated montmorillonite: Organic-inorganic hybrid material as an immobilization support for biosensors. Sens. Actuators B: Chem., 307, 127665 (2020). Doi: https://doi.org/10.1016/j.snb.2020.127665
10. Q. Lei, J. Guo, F. Kong, J.X. Cao, L. Wang, Z. Wang & C.J. Brinker. Bioinspired cell silicification: From extracellular to intracellular. J. Am. Chem. Soc., 143(17), 6305–6322 (2021). Doi: https://doi.org/10.1021/jacs.1c00814
11. A. Abdal-hay, F.A. Sheikh, A.N. Shmroukh, H.M. Mousa, Y. Kim & S. Ivanovski. Immobilization of bioactive glass ceramics @ 2D and 3D polyamide polymer substrates for bone tissue regeneration. Materials & Design, 210, 110094 (2021). Doi: https://doi.org/10.1016/j.matdes.2021.110094
12. Z. Zhao, Z. Xiao, B. Jiang & J. Chen. Tailored chitosan integration in diatomaceous earth particles as a scaffold for fructosyltransferase immobilization in fructo-oligosaccharide production. J. Sci. Food Agricult., 104(11), 6563–6572 (2024) Doi: https://doi.org/10.1002/jsfa.13480
13. A.I. Grandes-Blanco, A.A. Cuamatzi-Hernández, S. Luna-Suárez & L. Sánchez-Minutti. Producción de eritadenina por Lentinula edodes en fermentación en estado sólido. Scientia Fungorum, 52, e1267 (2021). Doi: https://doi.org/10.33885/sf.2021.52.1267
14. N.P. Kalogiouri, A. Tsalbouris, A. Kabir, K.G. Furton & V. Samanidou. Synthesis and application of molecularly imprinted polymers using sol–gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water. Microchem. J., 157, 104965 (2020). Doi: https://doi.org/10.1016/j.microc.2020.104965
15. Y. Liu, Z. Cai, Y. Jin, L. Sheng & M. Ma. Volcanic rock-inspired fabrication of porous chitosan macroparticles via gas porogen for enhancing the activity of immobilized enzymes. ACS Sust. Chem. Eng., 8(41), 15560–15572 (2020). Doi: https://doi.org/10.1021/acssuschemeng.0c04667
16. M.J. Lapponi, M.B. Méndez, J.A. Trelles & C.W. Rivero. Cell immobilization strategies for biotransformations. Curr. Opin. Green Sustainable Chem., 33, 100565 (2022). Doi: https://doi.org/10.1016/j.cogsc.2021.100565
17. B. Çağdaş, D. Tunalı & M. Türk. Natural Biopolymers and Their Applications in Bioengineering. In: N. Sağlam, F. Korkusuz & M. Şam (editors). Nano-Biomaterials in Tissue Repair and Regeneration. Tissue Repair and Reconstruction. Springer, Singapore, 2024. Doi: https://doi.org/10.1007/978-981-97-7600-9_2
18. J. Żur, A. Piński, J. Michalska, K. Hupert-Kocurek, A. Nowak, D. Wojcieszyńska & U. Guzik. A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain. Int. Biodeterior. Biodegrad., 149, 104919 (2020). Doi: https://doi.org/10.1016/j.ibiod.2020.104919
19. M. Maity, A. Bhattacharyya & J. Bhowal. Production and immobilization of β-galactosidase isolated from Enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix. Appl. Biochem. Biotechnol., 193(7), 2198–2224 (2021). Doi: https://doi.org/10.1007/s12010-021-03534-8
20. S. Abbasi-Ravasjani, H. Seddiqi, A. Moghaddaszadeh, M.-E. Ghiasvand, J. Jin, E. Oliaei, R.G. Bacabac & J. Klein-Nulend. Sulfated carboxymethyl cellulose and carboxymethyl κ-carrageenan immobilization on 3D-printed poly-ε-caprolactone scaffolds differentially promote pre-osteoblast proliferation and osteogenic activity. Front. Bioeng. Biotechnol., 10, 957263 (2022). Doi: https://doi.org/10.3389/fbioe.2022.957263
21. M.L. Verma, S. Kumar, A. Das, J.S. Randhawa & M. Chamundeeswari. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ. Chem. Lett., 18(2), 315–323 (2019). Doi: https://doi.org/10.1007/s10311-019-00942-5
22. M. Babaei, S. Bonakdar & B. Nasernejad. Selective biofunctionalization of 3D cell-imprinted PDMS with collagen immobilization for targeted cell attachment. Sci. Rep., 12(1), 12837 (2022). Doi: https://doi.org/10.1038/s41598-022-17252-6
23. H.B. Quesada, T.P. De Araújo, D.T. Vareschini, M.A.S.D. De Barros, R.G. Gomes & R. Bergamasco. Chitosan, alginate and other macromolecules as activated carbon immobilizing agents: A review on composite adsorbents for the removal of water contaminants. Int. J. Biol. Macromol., 164, 2535–2549 (2020). Doi: https://doi.org/10.1016/j.ijbiomac.2020.08.118
24. S. Bera & K. Mohanty. Areca nut (Areca catechu) husks and Luffa (Luffa cylindrica) sponge as microbial immobilization matrices for efficient phenol degradation. J. Water Process Eng., 33, 100999 (2020). Doi: https://doi.org/10.1016/j.jwpe.2019.100999
25. F. Huang, K. Li, R. Wu, Y. Yan & R. Xiao. Insight into the Cd2+ biosorption by viable Bacillus cereus RC-1 immobilized on different biochars: Roles of bacterial cell and biochar matrix. J. Clean. Prod., 272, 122743 (2020). Doi: https://doi.org/10.1016/j.jclepro.2020.122743
26. H. Memon, K. Lanjewar, N.A. Dafale & A. Kapley. Immobilization of microbial consortia on natural matrix for bioremediation of wastewaters. Int. J. Environ. Res., 14(4), 403–413 (2020). Doi: https://doi.org/10.1007/s41742-020-00267-0
27. Y.A. Rodríguez-Restrepo & C.E. Orrego. Immobilization of enzymes and cells on lignocellulosic materials. Environ. Chem. Lett., 18(3), 787–806 (2020). Doi: https://doi.org/10.1007/s10311-020-00988-w
28. M.J. Page, J.E. McKenzie, P.M. Bossuyt, I. Boutron, T.C. Hoffmann, C.D. Mulrow, L. Shamseer, J.M. Tetzlaff, E.A. Akl, S.E. Brennan, et al. The PRISMA 2020 statement: an updated guideline for report-ing systematic reviews. BMJ, 372, 71 (2021). Doi: https://doi.org/10.1136/bmj.n7
29. F. Simão-Neto, M.M. Fernandes de Melo-Neta, M. Bessa-Sales, F.A. Silva de Oliveira, V. de Castro-Bizerra, A.A. Sanders-Lopes, M.A. de Sousa-Rios & J.C. Sousa dos Santos. Research progress and trends on utilization of lignocellulosic residues as supports for enzyme immobilization via advanced bibliometric analysis. Polymers, 15(9), 2057 (2023). Doi: https://doi.org/10.3390/polym15092057
30. L. Jiang, H. Xia, W. Wang, Y. Zhang & Z. Li. Applications of microbially induced calcium carbonate precipitation in civil engineering practice: A state-of-the-art review. Constr. Build. Mater., 404, 133227 (2023). Doi: https://doi.org/10.1016/j.conbuildmat.2023.133227
31. A.A. Najim, A.Y. Radeef, I. al-Doori & Z.H. Jabbar. Immobilization: the promising technique to protect and increase the efficiency of microorganisms to remove contaminants. J. Chem. Technol. Biotechnol., 99(8), 1707–1733 (2024). Doi: https://doi.org/10.1002/jctb.7638
32. F.I. da Silva-Aires, D. Nascimento-Dari, I. Silveira-Freitas, J. Lopes da Silva, J.R. de Matos-Filho, K. Moreira dos Santos, V. de Castro-Bizerra, M. Bessa-Sales, F.L. de Souza-Magalhães, P. da Silva-Sousa, et al. Advanced and prospects in phenol wastewater treatment technologies: unveiling opportunities and trends. Discov. Water, 4, 20 (2024). https://doi.org/10.1007/s43832-024-00076-y
33. P.Y. Wong, J. Mal, A. Sandak, L. Luo, J. Jian & N. Pradhan. Advances in microbial self-healing concrete: A critical review of mechanisms, developments, and future directions. Sci. Total Environ., 947, 174553 (2024). Doi: https://doi.org/10.1016/j.scitotenv.2024.174553
34. D. Berillo, A. Al-Jwaid & J. Caplin. Polymeric materials used for immobilisation of bacteria for the bioremediation of contaminants in water. Polymers, 13(7), 1073 (2021). Doi: https://doi.org/10.3390/polym13071073
35. K. Sahu & S. Chakma. Recent trends on hydrogel development and sustainable applications: a bibliometric analysis and concise review. Polymer Bull., 81(9), 7687–7711 (2023). Doi: https://doi.org/10.1007/s00289-023-05080-1
36. I.N. Najar, P. Sharma, R. Das, S. Tamang, K. Mondal, N. Thakur, S.G. Gandhi & V. Kumar. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. J. Environ. Manage., 360, 121136 (2024). Doi: https://doi.org/10.1016/j.jenvman.2024.121136
37. K.A. Kravanja & M. Finšgar. Analytical techniques for the characterization of bioactive coatings for orthopaedic implants. Biomedicines, 9(12), 1936 (2021). Doi: https://doi.org/10.3390/biomedicines9121936
38. M.S. Twigg, N. Baccile, I.M. Banat, E. Déziel, R. Marchant, S. Roelants & I.N.A. Van Bogaert. Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microb. Biotechnol., 14(1), 147–170 (2020). Doi: https://doi.org/10.1111/1751-7915.13704
39. A.I. Omoregie, D.E.L. Ong, M. Alhassan, H.F. Basri, K. Muda, O.O. Ojuri & T. Ouahbi. Two decades of research trends in microbial-induced carbonate precipitation for heavy metal removal: a bibliometric review and literature review. Environ. Sci. Pollut. Res., 31, 52658–52687 (2024). Doi: https://doi.org/10.1007/s11356-024-34722-8
40. S.A.M. Carbonell, L.A. Barbosa-Cortez, L.F.C. Madi, L.C. Anefalos, R. Baldassin-Junior & R.L.V. Leal. Bioeconomy in Brazil: Opportunities and guidelines for research and public policy for regional development. Biofuel. Bioprod. Bioref., 15(6), 1675–1695 (2021). Doi: https://doi.org/10.1002/bbb.2263
41. D. Castagna, L. Scaunichi-Barbosa, C. Campoe-Martim, R.S. Dias-Paulista, N. Gomes-Machado, M. Sacardi-Biudes & A. Pacheco de Souza. Evapotranspiration assessment by remote sensing in Brazil with focus on Amazon biome: Scientometric analysis and perspectives for applications in agro-environmental studies. Hydrology, 11(3), 39 (2024). Doi: https://doi.org/10.3390/hydrology11030039
42. Y. Ding & S. Chen. A bibliographic outlook: Machine learning on biofilm. Research Directions: Biotechnology Design, 3, e2, 1–7 (2024). Doi: https://doi.org/10.1017/btd.2024.28
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




