Publicado
Estimation of monosodium glutamate (MSG) added to some food products in Syrian markets
Estimación del glutamato monosódico (GMS) añadido a algunos productos alimenticios en los mercados sirios
Estimativa de glutamato monossódico (MSG) adicionado a alguns produtos alimentícios em merca-dos sírios
DOI:
https://doi.org/10.15446/rcciquifa.v54n3.122679Palabras clave:
Monosodium glutamate (MSG), food products, derivatization, o-phthaldialdehyde (OPA), HPLC-UV (en)Glutamato monosódico (GMS), productos alimenticios, derivatización, o-ftaldialdehído (OPA), HPLC-UV (es)
Glutamato monossódico (MSG), produtos alimentícios, derivatização, o-ftaldialdeído (OPA), HPLC-UV (pt)
Descargas
Introduction: Monosodium Glutamate (MSG) is one of the world’s most extensively used food additives which is ingested as part of commercially processed foods. MSG is used as a flavor enhancer and it increases the sapidity of food. MSG produces a flavor that can’t be provided by other foods. It elicits a taste described in Japanese as umami. The toxic effects of MSG have raised the increasing interest in MSG intake as flavor enhancer. It causes many toxic effects on the health. It causes neurotoxicity (it causes Chinese Restaurant Syndrome), obesity, renal toxicity, cardiovascular toxicity, metabolic effects and other health effects. Objective: This study aimed to determine concentration of MSG in some foods products sold in Syrian Markets. Methodology: 40 samples of widely consumed food products were randomly selected from local markets in Damascus and Deratiah as follows: 12 samples chicken luncheon, 5 samples of instant soup, 6 samples of potato chips, 6 samples of chicken broth stocks, 5 samples of instant noodles and 6 samples of meat broth powder (each powder sachet is equivalent to one stock). A simple HPLC-UV method, based on a derivatization procedure with o-phthaldialdehyde (OPA) was used for determination of MSG in the samples. And a cross-sectional study was performed by using SPSS program. Results: Results revealed that the levels of monosodium glutamate (g/100 g) were varied in the examined foodstuffs. Chicken broth stocks samples had the highest levels of MSG with an average of (13.98), followed by (10.60) in samples of meat broth powders, followed by (10.16) in samples of chicken luncheon, followed by (8.9722) in samples of instant noodles, followed by (8.96) in samples of instant soup, while potato chips samples had the lowest levels with an average of (8.53). Conclusions: There was a significant variation in concentrations of MSG between samples of chicken broth stocks and samples of the other categories of food products.
Introducción: El glutamato monosódico (GMS) es uno de los aditivos alimentarios más utilizados a nivel mundial y se ingiere en alimentos procesados comercialmente. Se utiliza como potenciador del sabor y aumenta la sapidez de los alimentos. El GMS produce un sabor que otros alimentos no pueden proporcionar, lo que se conoce en japonés como umami. Los efectos tóxicos del GMS han despertado un creciente interés en su consumo como potenciador del sabor. Provoca numerosos efectos tóxicos para la salud, como neurotoxicidad (causando el síndrome del restaurante chino), obesidad, toxicidad renal, toxicidad cardiovascular, efectos metabólicos y otros efectos sobre la salud. Objetivo: Este estudio tuvo como objetivo determinar la concentración de GMS en algunos productos alimenticios vendidos en los mercados sirios. Metodología: Se seleccionaron aleatoriamente 40 muestras de productos alimenticios de amplio consumo de los mercados locales de Damasco y Deratiah de la siguiente manera: 12 muestras de almuerzo de pollo, 5 muestras de sopa instantánea, 6 muestras de papas fritas, 6 muestras de caldos de pollo, 5 muestras de fideos instantáneos y 6 muestras de caldo de carne en polvo (cada sobre de polvo es equivalente a un caldo). Se utilizó un método simple de HPLC-UV, basado en un procedimiento de derivatización con o-ftaldialdehído (OPA) para la determinación de MSG en las muestras. Y se realizó un estudio transversal utilizando el programa SPSS. Resultados: Los resultados revelaron que los niveles de glutamato monosódico (g/100 g) variaron en los productos alimenticios examinados. Las muestras de caldo de pollo presentaron los niveles más altos de GMS, con un promedio de (13,98), seguido de (10,60) en las muestras de caldo de carne en polvo, seguido de (10,16) en las muestras de pollo enlatado, seguido de (8,9722) en las muestras de fideos instantáneos, seguido de (8,96) en las muestras de sopa instantánea, mientras que las muestras de papas fritas presentaron los niveles más bajos, con un promedio de (8,53). Conclusiones: Se observó una variación significativa en las concentraciones de GMS entre las muestras de caldo de pollo y las muestras de otras categorías de productos alimenticios.
Introdução: O glutamato monossódico (MSG) é um dos aditivos alimentares mais utilizados no mundo, sendo ingerido como parte de alimentos processados comercialmente. O MSG é usado como intensificador de sabor e aumenta o sabor dos alimentos. O MSG produz um sabor que não pode ser fornecido por outros alimentos. Ele provoca um sabor descrito em japonês como umami. Os efeitos tóxicos do MSG têm aumentado o interesse na ingestão de MSG como intensificador de sabor. Ele causa muitos efeitos tóxicos à saúde. Causa neurotoxicidade (causando a Síndrome do Restaurante Chinês), obesidade, toxicidade renal, toxicidade cardiovascular, efeitos metabólicos e outros efeitos à saúde. Objetivo: Este estudo teve como objetivo determinar a concentração de MSG em alguns produtos alimentícios vendidos em mercados sírios. Metodologia: 40 amostras de produtos alimentícios amplamente consumidos foram selecionadas aleatoriamente de mercados locais em Damasco e Deratiah da seguinte forma: 12 amostras de frango para almoço, 5 amostras de sopa instantânea, 6 amostras de batata frita, 6 amostras de caldo de galinha, 5 amostras de macarrão instantâneo e 6 amostras de caldo de carne em pó (cada sachê de pó é equivalente a um caldo). Um método simples de HPLC-UV, baseado em um procedimento de derivatização com o-ftaldialdeído (OPA), foi usado para determinação de MSG nas amostras. E um estudo transversal foi realizado usando o programa SPSS. Resultados: Os resultados revelaram que os níveis de glutamato monossódico (g/100 g) foram variados nos alimentos examinados. Amostras de caldo de galinha apresentaram os maiores níveis de MSG, com uma média de (13,98), seguidas por (10,60) em amostras de caldo de carne em pó, (10,16) em amostras de frango para almoço, (8,9722) em amostras de macarrão instantâneo, (8,96) em amostras de sopa instantânea, enquanto amostras de batata frita apresentaram os menores níveis, com uma média de (8,53). Conclusões: Houve uma variação significativa nas concentrações de MSG entre amostras de caldo de galinha e amostras das demais categorias de produtos alimentícios.
Referencias
1. L.N. Thuy, L.C. Salanță, M. Tofană, S.A. Socaci, A.C. Fărcaș & C.R. Pop. A mini review about monosodium glutamate. Bull. UASVM Food Sci. Technol., 77(1), 1–12 (2020). URL: https://journals.usamvcluj.ro/index.php/fst/article/view/13717
2. K. Kurihara. Glutamate: from discovery as a food flavor to role as a basic taste (umami). Am. J. Clin. Nutr., 90(3), 719S–722S (2009). Doi: https://10.3945/ajcn.2009.27462D
3. R. Naveen-Kumar, P. Uday-kumar & R. Hemalatha. Monosodium glutamate (MSG) - A food additive. Indian J. Nutr. Diet., 57(1), 98-107 (2020). URL: https://www.i-scholar.in/index.php/Ijnd/article/view/193603
4. H.M. Bayram, H.F. Akgoz, O. Kizildemir & A. Ozturkcan. Monosodium glutamate: review on preclinical and clinical reports, Biointerface Res. Appl. Chem., 13(2), 149 (2023). Doi: https://doi.org/10.33263/briac132.149
5. Y. Zhang, C. Venkitasamy, Z. Pan, W. Liu & L. Zhao. Novel umami ingredients: Umami peptides and their taste. J. Food Sci., 82(1), 16-23 (2017). Doi: https://doi.org/10.1111/1750-3841.13576
6. Z. Kazmi, I. Fatima, S. Perveen & S.S. Malik. Monosodium glutamate: Review on clinical reports. Int. J. Food Propert., 20(S2), 1807S-1815S (2017). Doi: https://doi.org/10.1080/10942912.2017.1295260
7. A. Mortensen, F. Aguilar, R. Crebelli, A. Di Domenico, B. Dusemund, M.J. Frutos, et al. Re‐evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. Eur. Food Saf. Author., 15(7), e04910 (2017). Doi: https://doi.org/10.2903/j.efsa.2017.4910
8. F.A. Rachma & T. Saptawati. Analysis tolerance of monosodium glutamate (MSG) in instant noodles with UV-Vis spectrophotometry. J. Sci. Technol. Res. Pharm., 1(1), 20–24 (2021). Doi: https://doi.org/10.15294/JSTRP.V1i1.43568
9. G.R. Kerr, M. Wu-Lee, M. El-Lozy, R. McGandy & F.J. Stare. Prevalence of the "Chinese Restaurant Syndrome”. J. Am. Diet. Assoc., 75(1), 29–33 (1979). Doi: https://doi.org/10.1016/S0002-8223(21)05277-9
10. R. Geha, A. Beiser, C. Ren, R. Patterson, P. Greenberger, L.C. Grammer, et al. Review of alleged reaction to monosodium glutamate and outcome of a multicenter double-blind placebo-controlled study. J. Nutr., 130(4S Suppl.), 1058S–1063S (2000). Doi: https://doi.org/10.1093/jn/130.4.1058S
11. M. Shastri, D. Raval & V. Rathod. Monosodium glutamate (MSG) symptom complex (Chinese Restaurant Syndrome): Nightmare of Chinese food lovers! J. Assoc. Physicians India, 71(6), 93–95 (2023). URL: https://journal-api.s3.ap-south-1.amazonaws.com/issues/August2023.pdf
12. A. Zanfirescu, A. Ungurianu, A.M. Tsatsakis, G.M. Nițulescu, D. Kouretas, A. Veskoukis, D. Tsoukalas, A.B. Engin, M. Aschner & D. Margină. A review of the alleged health hazards of monosodium glutamate. Compr. Rev. Food Sci. Food Saf., 18(4), 1111–1134 (2019). Doi: https://doi.org/10.1111/1541-4337.12448
13. M.C. Rivera-Cervantes, J.S. Torres, A. Feria-Velasco, J. Armendariz-Borunda & C. Beas-Zárate. NMDA and AMPA receptor expression and cortical neuronal death are associated with p38 in glutamate-induced excitotoxicity in vivo. J. Neurosci. Res., 76(5), 678–687 (2004). Doi: https://doi.org/10.1002/jnr.20103
14. H.S.A. Ezza & Y.A. Khadrawyb. Glutamate excitotoxicity and neurodegeneration. J. Mol. Genet. Med., 8(4), 1000141 (2014). URL: https://www.hilarispublisher.com/open-access/glutamate-excitotoxicity-and-neurodegeneration-1747-0862-1000141.pdf
15. Y. Zhang & B.R. Bhavnani. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci., 7(49), 49 (2006). Doi: https://doi.org/10.1186/1471-2202-7-49
16. K. Sadek, T. Abouzed & S. Nasr. Lycopene modulates cholinergic dysfunction, Bcl-2/Bax balan-ce, and antioxidant enzymes gene transcripts in monosodium glutamate (E621) induced neuro-toxicity in a rat model. Can. J. Physiol. Pharmacol., 94(4), 394–401 (2016). Doi: https://doi.org/10.1139/cjpp-2015-0388
17. M.P. Mattson, Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann. N. Y. Acad. Sci., 1144, 97–112 (2008). Doi: https://doi.org/10.1196/annals.1418.005
18. A. Baskys & M. Blaabjerg. Understanding regulation of nerve cell death by mGluRs as a method for development of successful neuroprotective strategies. J. Neurol. Sci., 229-230, 201–209 (2005). Doi: https://doi.org/10.1016/j.jns.2004.11.028
19. O.J. Onaolapo, A.Y. Onaolapo, M.A. Akanmu & O. Gbola. Evidence of alterations in brain structure and antioxidant status following 'low-dose' monosodium glutamate ingestion, Pathophysiology, 23(3), 147–156 (2016). Doi: https://doi.org/10.1016/j.pathophys.2016.05.001
20. A.M. El-Mahalaway & N.E. El-Azab. The potential neuroprotective role of mesenchymal stem cell-derived exosomes in cerebellar cortex lipopolysaccharide-induced neuroinflammation in rats: a histological and immunohistochemical study, Ultrastruct. Pathol., 44(2), 159–173 (2020). Doi: https://doi.org/10.1080/01913123.2020.1726547
21. H. Ka, D. Shufa, X. Pengcheng, S. Sangita, W. Huijun, Z. Fengying & P. Barry. Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). Am. J. Clin. Nutr., 93(6), 1328–1336 (2011). Doi: https://doi.org/10.3945/ajcn.110.008870
22. R. Roman-Ramos, J.C. Almanza-Perez, R. Garcia-Macedo, G. Blancas-Flores, A. Fortis-Barrera, E.I. Jasso, et al. Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mRNA expression of peroxisome proliferator-activated receptors in mice. Basic Clin. Pharmacol. Toxicol., 108(6), 406–413 (2011). Doi: https://doi.org/10.1111/j.1742-7843.2011.00671.x
23. A.D. Alalwani. Monosodium glutamate induced testicular lesions in rats (histological study). Middle East Fertil. Soc. J., 19(4), 174–280 (2014). Doi: https://doi.org/10.1016/j.mefs.2013.09.003
24. D.T. Oluwole, O.S. Ebiwonjumi, L.O. Ajayi, O.D. Alabi, V. Amos, G. Akanbi, et al. Disruptive consequences of monosodium glutamate on male reproductive function: A review. Curr. Res. Toxicol., 6, 100148 (2024). Doi: https://doi.org/10.1016/j.crtox.2024.100148
25. L. Yu, Y. Zhang, R. Ma, L. Bao, J. Fang & T. Yu. Potent protection of ferulic acid against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain. Eur. Neuropsychopharmacol., 16(3), 170–177 (2006). Doi: https://doi.org/10.1016/j.euroneuro.2005.08.006
26. I. Mukherjee, S. Biswas, S. Singh, J. Talukdar, M.S. Alqahtani, M. Abbas, et al. Monosodium glutamate perturbs human trophoblast invasion and differentiation through a reactive oxygen species-mediated pathway: An in-vitro assessment. Antioxidants, 12(3), 634 (2023). Doi: https://doi.org/10.3390/antiox12030634
27. S. Umukoro, G.O. Oluwole, H.E. Olamijowon, A.I. Omogbiya & A.T. Eduviere. Effect of monosodium glutamate on behavioral phenotypes, biomarkers of oxidative stress in brain tissues and liver enzymes in mice. World J. Neurosci., 5(5), 339 (2015). Doi: https://doi.org/10.4236/wjns.2015.55033
28. C. Dow, B. Balkau, F. Bonnet, F. Mancini, K. Rajaobelina, J. Shaw, D.J. Magliano & G. Fagherazzi. Strong adherence to dietary and lifestyle recommendations is associated with decreased type 2 diabetes risk in the AusDiab cohort study. Prev. Med., 123, 208–216 (2019). Doi: https://doi.org/10.1016/j.ypmed.2019.03.006
29. S. Saeidnia & M. Abdollahi. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol. Appl. Pharmacol., 273(3), 442–455 (2013). Doi: https://doi.org/10.1016/j.taap.2013.09.031
30. E.A. Elbassuoni, M.M. Ragy & S.M. Ahmed. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomed. Pharmacother., 108, 799–808 (2018). Doi: https://doi.org/10.1016/j.biopha.2018.09.093
31. A. Sharma. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: A mini-review. J. Biomed. Sci., 22(1), 93 (2015). Doi: https://doi.org/10.1186/s12929-015-0192-5
32. O.A. Ikebunwa. Evaluation of the cardiac effect of monosodium glutamate (Ajinomoto) in albino rats. Open Access Res. J. Life Sci., 5(2), 57–62 (2023). Doi: https://doi.org/10.53022/oarjls.2023.5.2.0036
33. S.M. Hazzaa, E.S. El-Roghy, M.A. Abd-Eldaim & G.E. Elgarawany. Monosodium glutamate induces cardiac toxicity via oxidative stress, fibrosis, and P53 proapoptotic protein expression in rats. Environ. Sci. Pollut. Res. Int., 27(16), 20014–20024 (2020). Doi: https://doi.org/10.1007/s11356-020-08436-6
34. S.J. Dumas, G. Bru-Mercier, A. Courboulin, M. Quatredeniers, C. Rücker-Martin, F. Antigny, et al. NMDA-type glutamate receptor activation promotes vascular remodeling and pulmonary arterial hypertension. Circulation, 137(22), 2371–2389 (2018). Doi: https://doi.org/10.1161/circulationaha.117.029930
35. K. Niaz, E. Zaplatic & J. Spoor. Extensive use of monosodium glutamate: A threat to public health? EXCLI J., 17, 273–278 (2018). Doi: https://doi.org/10.17179/excli2018-1092
36. L. Yang, Y. Gao, J. Gong, L. Peng, H.R. El-Seedi, M.A. Farag, Y. Zhao & J. Xiao. A multifaceted review of monosodium glutamate effects on human health and its natural remedies. Food Ma-ter. Res., 3, 16 (2023). Doi: https://doi.org/10.48130/fmr-2023-0016
37. S. Çakmakçı & M.A. Salık. Monosodium glutamate (MSG) as a food additive and comments on its use. 4th International Conference on Advanced Engineering Technologies, 28-30 September 2022, Bayburt, Turkey, 2022; pp. 298–295. URL: https://www.researchgate.net/publication/365345207_Monosodium_Glutamate_MSG_as_a_Food_Additive_and_Comments_on_Its_Use
38. M. Soyseven, H.Y. Aboul‐Enein & G. Arli. Development of a HPLC method combined with ultraviolet/diode array detection for determination of monosodium glutamate in various food samples. Int. J. Food Sci. Technol., 56(1), 461–467 (2021). Doi: https://doi.org/10.1111/ijfs.14661
39. S.L. Zandy, J.M. Doherty, N.D. Wibisono & R.A. Gonzales. High sensitivity HPLC method for analysis of in vivo extracellular GABA using optimized fluorescence parameters for o-phthalaldehyde OPA)/sulfite derivatives. J. Chromatogr. B, Anal. Technol. Biomed. Life Sci., 1055–1056, 1–7 (2017). Doi: https://doi.org/10.1016/j.jchromb.2017.04.003
40. B.E. Demirhan, B. Demirhan, C. Sönmez, H. Torul, U. Tamer & G. Yentür. Monosodium glutamate in chicken and beef stock cubes using high-performance liquid chromatography. Food Addit. Contam. Part B Surveill., 8(1), 63–66 (2015). Doi: https://doi.org/10.1080/19393210.2014.991355
41. V. Husarova & D. Ostatnikova. Monosodium glutamate toxic effects and their implications for human intake: A review. JMED Res., 2013, 608765 (2013). Doi: https://doi.org/10.5171/2013.608765
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




