Publicado
Evaluation of AI models for predicting drug solubility in cosolvent systems
Evaluación de modelos de IA para predecir la solubilidad de fármacos en sistemas cosolventes
Avaliação de modelos de IA para prever a solubilidade de medicamentos em sistemas de co-solventes
DOI:
https://doi.org/10.15446/rcciquifa.v54n3.122716Palabras clave:
Solubility, drugs, artificial intelligence (AI), predictive models, cosolvent systems, pharmacy (en)Solubilidad, medicamentos, inteligencia artificial (IA), modelos predictivos, sistemas cosolventes, farmacia (es)
Solubilidade, medicamentos, inteligência artificial (IA), modelos preditivos, sistemas co-solventes, farmácia (pt)
Descargas
The low solubility of drugs presents a significant challenge in pharmaceutical development. This study evaluates the ability of five artificial intelligence models — Artificial Neural Network (ANN), Random Forest, K-Nearest Neighbors (KNN), Linear Regression, and XGBoost — to predict drug solubility in cosolvent systems. The study uses a dataset that integrates the physicochemical properties of the solute and solvent. The objective was to identify the most accurate model and analyze the relative importance of the predictor variables. The results demonstrate a clear hierarchy in model performance. Tree-based algorithms XGBoost and Random Forest showed exceptional predictive power with coefficients of determination (R²) of 0.9737 and 0.9752, respectively, and the lowest mean squared errors. The ANN model also demonstrated robust performance (R² = 0.9585), whereas the linear regression model was unable to capture the nonlinear relationships inherent in the system (R² = 0.4463). Feature importance analysis revealed significant differences: tree models prioritized the drug's molar mass, while ANN attributed considerable importance to the cosolvent system's properties, such as the solvents' molar mass and volume. These differences highlight the complexity of solubility as a multifactorial phenomenon. We conclude that ensemble models, particularly XGBoost, are highly effective and accurate tools for in silico solubility prediction. Additionally, we find that a comparative modeling approach is crucial for gaining a holistic understanding of the physicochemical interactions that govern the process.
La baja solubilidad de los fármacos supone un reto importante en el desarrollo farmacéutico. En este estudio se evalúa la capacidad de cinco modelos de inteligencia artificial (red neuronal artificial, bosque aleatorio, K-vecinos más cercanos, regresión lineal y XGBoost) para predecir la solubilidad de los fármacos en sistemas cosolventes. El estudio utiliza un conjunto de datos que integra las propiedades fisicoquímicas del soluto y el solvente. El objetivo era identificar el modelo más preciso y analizar la importancia relativa de las variables predictivas. Los resultados muestran una clara jerarquía en el rendimiento de los modelos. Los algoritmos basados en árboles, XGBoost y Bosque Aleatorio, mostraron una capacidad predictiva excepcional, con coeficientes de determinación (R²) de 0,9737 y 0,9752, respectivamente, y los errores cuadrados medios más bajos. El modelo ANN también demostró un buen rendimiento (R² = 0,9585), mientras que el modelo de regresión lineal no pudo captar las relaciones no lineales inherentes al sistema (R² = 0,4463). El análisis de importancia de las características reveló diferencias significativas: los modelos de árbol dieron prioridad a la masa molar del fármaco, mientras que la ANN atribuyó una importancia considerable a las propiedades del sistema cosolvente, como la masa molar y el volumen de los disolventes. Estas diferencias ponen de manifiesto la complejidad de la solubilidad como fenómeno multifactorial. En conclusión, los modelos de conjunto, en particular XGBoost, son herramientas muy eficaces y precisas para la predicción de la solubilidad in silico. Además, consideramos que un enfoque de modelización comparativa es fundamental para obtener una comprensión global de las interacciones fisicoquímicas que rigen el proceso.
A baixa solubilidade dos fármacos representa um desafio importante no desenvolvimento farmacêutico. Este estudo avalia a capacidade de cinco modelos de inteligência artificial (rede neural artificial, floresta aleatória, K-vizinhos mais próximos, regressão linear e XGBoost) para prever a solubilidade dos fármacos em sistemas co-solventes. O estudo utiliza um conjunto de dados que integra as propriedades físico-químicas do soluto e do solvente. O objetivo era identificar o modelo mais preciso e analisar a importância relativa das variáveis preditivas. Os resultados mostram uma hierarquia clara no desempenho dos modelos. Os algoritmos baseados em árvores, XGBoost e Random Forest, mostraram uma capacidade preditiva excepcional, com coeficientes de determinação (R²) de 0,9737 e 0,9752, respectivamente, e os menores erros quadráticos médios. O modelo ANN também demonstrou um bom desempenho (R² = 0,9585), enquanto o modelo de regressão linear não conseguiu captar as relações não lineares inerentes ao sistema (R² = 0,4463). A análise da importância das características revelou diferenças significativas: os modelos de árvore deram prioridade à massa molar do fármaco, enquanto a ANN atribuiu uma importância considerável às propriedades do sistema co-solvente, como a massa molar e o volume dos solventes. Estas diferenças evidenciam a complexidade da solubilidade como um fenómeno multifatorial. Em conclusão, os modelos de conjunto, em particular o XGBoost, são ferramentas muito eficazes e precisas para a previsão da solubilidade in silico. Além disso, consideramos que uma abordagem de modelagem comparativa é fundamental para obter uma compreensão global das interações físico-químicas que regem o processo.
Referencias
1. S. Stegemann, C. Moreton, S. Svanbäck, K. Box, G. Motte & A. Paudel. Trends in oral small-molecule drug discovery and product development based on product launches before and after the Rule of Five. Drug Discov. Today, 28(2), 103344 (2023). Doi: https://doi.org/10.1016/j.drudis.2022.103344
2. B. Xie, Y. Liu, X. Li, P. Yang & W. He. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm. Sinica B, 14(11), 4683–4716 (2024). Doi: https://doi.org/10.1016/j.apsb.2024.08.027
3. K.T. Savjani, A.K. Gajjar & J.K. Savjani. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 195727 (2012). Doi: https://doi.org/10.5402/2012/195727
4. M. Khoubnasabjafari, D.R. Delgado, F. Martinez, A. Jouyban & W.E. Acree. Predicting the solubility, thermodynamic properties and preferential solvation of sulphamethazine in acetonitrile + water mixtures using a minimum number of experimental data points. Phys. Chem. Liq., 59(3) 400–411 (2021). Doi: https://doi.org/10.1080/00319104.2020.1731812
5. G. Krishna, K.J. Chen, C.C. Lin & A.A. Nomeir. Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2. Int. J. Pharm., 222(1), 77–89 (2001). Doi: https://doi.org/10.1016/S0378-5173(01)00698-6
6. Y. Pal, P.K. Deb, S. Bandopadhyay, N. Bandyopadhyay & R.K. Tekade. Role of physicochemical parameters on drug absorption and their implications in pharmaceutical product development. In: R.K. Tekade (editor). Dosage Form Design Considerations: Volume I: A volume in Advances in Pharmaceutical Product Development and Research. Academic Press, 2018; pp. 85–116. Doi: https://doi.org/10.1016/B978-0-12-814423-7.00003-4
7. S.B. Murdande, M.J. Pikal, R.M. Shanker & R.H. Bogner. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement. Pharm. Dev. Technol., 16(3), 187–200 (2011). Doi: https://doi.org/10.3109/10837451003774377
8. W.J. Mader & T. Higuchi. Phase solubility analysis. C R C Crit. Rev. Anal. Chem., 1(2), 193–215 (1970). Doi: https://doi.org/10.1080/10408347008542734
9. J.J. Lingane. Advances in Analytical Chemistry and Instrumentation. Volume I (Book Review). J. Am. Chem. Soc., 83(10), 2404–2404 (1961). Doi: https://doi.org/10.1021/ja01471a053
10. L.W. Dittert, T. Higuchi & D.R. Reese. Phase solubility technique in studying the formation of complex salts of triamterene. J. Pharm. Sci., 53(11), 1325–1328 (1964). Doi: https://doi.org/10.1002/jps.2600531108
11. Current model for financing drug development: From concept through approval. In: Break-through Business Models: Drug Development for Rare and Neglected Diseases and Individualized Therapies: Workshop Summary. Institute of Medicine (US) Forum on Drug Discovery, Development, and Translation. National Academies Press, Washington (DC), 2009; pp. 7–11. URL: https://www.ncbi.nlm.nih.gov/books/NBK50977/pdf/Bookshelf_NBK50977.pdf, accessed August 7, 2025.
12. L. Morici, O. Jordan, E. Allémann & C. Rodríguez-Nogales. Recent advances in nanocrystals for arthritis drug delivery. Expert Opin. Drug Deliv., 22(7), 1031–1042 (2025). Doi: https://doi.org/10.1080/17425247.2025.2505758
13. N.Y. Echeagaray-Solorza, Y. Díaz-Romero, L.G. Tobón-Galicia & S. Tejada-Paniagua. Predicting drug solubility in cosolvent systems using artificial intelligence algorithms. Rev. Colomb. Cienc. Quím. Farm., 54(1), 131–144 (2025). Doi: https://doi.org/10.15446/rcciquifa.v54n1.119553
14. D.R. Delgado, A. Sosnik & F. Martínez. Transfer thermodynamics of triclosan from water to organic solvents with different hydrogen bonding capability. Lat. Am. J. Pharm., 30(3), 459–466 (2011). URL: https://www.latamjpharm.org/resumenes/30/3/LAJOP_30_3_1_7.pdf
15. A. Aydi, I. Dali, K. Ghachem, A.Z. Al-Khazaal, D.R. Delgado & L. Kolsi. Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation. Alexandria Eng. J., 60(1) 905–914 (2021). Doi: https://doi.org/10.1016/j.aej.2020.10.019
16. A.R. Holguín, G.A. Rodríguez, D.M. Cristancho, D.R. Delgado & F. Martínez. Solution thermodynamics of indomethacin in propylene glycol+water mixtures. Fluid Phase Equilib., 314, 134–139 (2012). Doi: https://doi.org/10.1016/j.fluid.2011.11.001
17. E.A. Cantillo, D.R. Delgado & F. Martinez, Solution thermodynamics of indomethacin in ethanol + propylene glycol mixtures. J. Mol. Liq., 181, 62–67 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.02.008
18. M.Á. Peña, D.R. Delgado & F. Martínez. Preferential solvation of indomethacin in some aqueous co-solvent mixtures. Chem. Eng. Commun., 203(5), 619–627 (2016). Doi: https://doi.org/10.1080/00986445.2015.1074898
19. M.A. Ruidiaz, D.R. Delgado, F. Martínez & Y. Marcus. Solubility and preferential solvation of indomethacin in 1,4-dioxane+water solvent mixtures. Fluid Phase Equilib., 299(2), 259–265 (2010). Doi: https://doi.org/10.1016/j.fluid.2010.09.027
20. A.R. Holguín, D.R. Delgado & F. Martínez. Indomethacin solubility in propylene glycol + water mixtures according to the Extended Hildebrand Solubility Approach. Lat. Am. J. Pharm., 31(5), 720–726 (2012). URL: https://www.latamjpharm.org/resumenes/31/5/LAJOP_31_5_1_12.pdf
21. M.A. Ruidiaz, D.R. Delgado & F. Martínez. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended Hildebrand solubility approach. Quim. Nova, 34(9), 1569–1574 (2011). Doi: https://doi.org/10.1590/S0100-40422011000900016
22. G.A. Rodríguez, D.R. Delgado & F. Martínez. Preferential solvation of indomethacin and naproxen in ethyl acetate + ethanol mixtures according to the IKBI method. Phys. Chem. Liq., 52(4), 533–545 (2014). Doi: https://doi.org/10.1080/00319104.2013.842474
23. M.Á. Peña, D.R. Delgado & F. Martínez. Preferential solvation of indomethacin in 1,4-dioxane + water mixtures according to the inverse Kirkwood–Buff integrals method. Phys. Chem. Liq., 54(4) 462–474 (2016). Doi: https://doi.org/10.1080/00319104.2015.1115329
24. D.R. Delgado, A.R. Holguin & F. Martínez. Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents. Vitae, 19(1), 79–92 (2012). Doi: https://doi.org/10.17533/udea.vitae.10838
25. A.R. Holguín, D.R. Delgado & F. Martínez. Thermodynamic study of the solubility of triclocarban in ethanol + propylene glycol mixtures. Quim. Nova, 35(2), 280–285 (2012). Doi: https://doi.org/10.1590/S0100-40422012000200009
26. D.I. Caviedes-Rubio, C.P. Ortiz, F. Martinez & D.R. Delgado. Thermodynamic assessment of triclocarban dissolution process in N-methyl-2-pyrrolidone + water cosolvent mixtures. Molecules, 28(20), 7216 (2023). Doi: https://doi.org/10.3390/molecules28207216
27. A.M. Cruz-González, M.S. Vargas-Santana, S.d.J. Polania-Orozco, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, A. Jouyban & W.E. Acree, Jr. Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures. J. Mol. Liq., 325, 115222 (2021). Doi: https://doi.org/10.1016/j.molliq.2020.115222
28. J.J. Agredo-Collazos, C.P. Ortiz, N.E. Cerquera, R.E. Cardenas-Torres, D.R. Delgado, M.Á. Peña & F. Martínez. Equilibrium solubility of triclocarban in (cyclohexane + 1,4-dioxane) mixtures: Determination, correlation, thermodynamics and preferential solvation. J. Solution Chem., 51(12), 1603–1625 (2022). Doi: https://doi.org/10.1007/s10953-022-01209-4
29. V. Puentes-Lozada, D.I. Caviedes-Rubio, C. Rincón-Guio, N.E. Cerquera, R.E. Cardenas-Torres, C.P. Ortiz, F. Martinez & D.R. Delgado, Thermodynamic study of the solubility of triclocarban in polyethylene glycol 200 + water cosolvent mixtures at different temperatures. Molecules, 30(12), 2631 (2025). Doi: https://doi.org/10.3390/molecules30122631
30. A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban & F. Martínez. Solution thermodynamics and preferential solvation of triclocarban in 1,4-dioxane (1) + water (2) mixtures at 298.15 K, Phys. Chem. Liq., 57(1), 55–66 (2019). Doi: https://doi.org/10.1080/00319104.2017.1416613
31. D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martínez & A. Jouyban. Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some 1,4-dioxane (1) + water (2) mixtures. J. Mol. Liq., 271, 522–529 (2018). Doi: https://doi.org/10.1016/j.molliq.2018.09.026
32. C.A. Munoz-Ortiz, N.E. Cerquera, J.K.C. Camacho, J. Osorio-Gallego, R.E. Cardenas-Torres, M. Herrera & D.R. Delgado. Preferential solvation of triclocarban in N-methyl-2-pyrrolidone + water cosolvent mixtures according to the Inverse Kirkwood-Buff Integrals (IKBI) method and correlation of solubility by means of some mathematical models. Rev. Colomb. Cienc. Quim. Farm., 53(1), 219–243 (2024). Doi: https://doi.org/10.15446/rcciquifa.v53n1.111422
33. A. Torres-Cardozo, N.E. Cerquera, C.P. Ortiz, J. Osorio-Gallego, R.E. Cardenas-Torres, F. Angarita-Reina, F. Martinez & D.R. Delgado. Thermodynamic analysis of the solubility of progesterone in 1-octanol + ethanol cosolvent mixtures at different temperatures. Alexandria Eng. J., 64, 219–235 (2023). Doi: https://doi.org/10.1016/j.aej.2022.08.035
34. D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez & Y. Marcus. Solubility and preferential solvation of meloxicam in ethanol + water mixtures. Fluid Phase Equilib., 305(1), 88–95 (2011). Doi: https://doi.org/10.1016/j.fluid.2011.03.012
35. D.M. Cristancho, D.R. Delgado & F. Martínez. Meloxicam solubility in ethanol + water mixtures according to the extended Hildebrand solubility approach. J. Solution Chem., 42(8), 1706–1716 (2013). Doi: https://doi.org/10.1007/s10953-013-0058-y
36. D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban & F. Martínez. Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures. Ind. Eng. Chem. Res., 53(42), 16550–16558 (2014). Doi: https://doi.org/10.1021/ie503101h
37. A.R. Holguín, D.R. Delgado, F. Martínez & Y. Marcus. Solution thermodynamics and preferential solvation of meloxicam in propylene glycol + water mixtures. J. Solution Chem., 40(12), 1987–1999 (2011). Doi: https://doi.org/10.1007/s10953-011-9769-0
38. D.R. Delgado, A. Jouyban & F. Martínez. Solubility and preferential solvation of meloxicam in methanol + water mixtures at 298.15 K. J. Mol. Liq., 197, 368–373 (2014). Doi: https://doi.org/10.1016/j.molliq.2014.06.006
39. A. Aydi, C. Ayadi, K. Ghachem, A.Z. Al-Khazaal, D.R. Delgado, M. Alnaief & L. Kolsi. Solubility, solution thermodynamics, and preferential solvation of amygdalin in ethanol + water solvent mixtures. Pharmaceuticals, 13(11), 395 (2020). Doi: https://doi.org/10.3390/ph13110395
40. E.A. Ahumada, D.R. Delgado & F. Martínez. Solution thermodynamics of acetaminophen in some PEG 400 + water mixtures. Fluid Phase Equilib., 332, 120–127 (2012). Doi: https://doi.org/10.1016/j.fluid.2012.07.004
41. E.A. Ahumada, D.R. Delgado & F. Martínez. Corrigendum to “Solution thermodynamics of acetaminophen in some PEG 400 + water mixtures” [Fluid Phase Equilibr. 332 (2012) 120-127]. Fluid Phase Equilib., 334, 204 (2012). Doi: https://doi.org/10.1016/j.fluid.2012.08.017
42. A.R. Holguín, D.R. Delgado, M.A. Ruidiaz, E.F. Vargas & F. Martínez. Apparent molar volumes of sodium naproxen in water at several concentrations and temperatures. Lat. Am. J. Pharm., 30(3), 619–623 (2011). URL: https://www.latamjpharm.org/resumenes/30/3/LAJOP_30_3_2_17.pdf
43. D.R. Delgado, M.A. Ruidiaz, S.M. Gómez, M. Gantiva & F. Martínez. Thermodynamic study of the solubility of sodium naproxen in some ethanol + water mixtures. Quim. Nova, 33(9), 1923–1927 (2010). Doi: https://doi.org/10.1590/S0100-40422010000900019
44. G.A. Rodríguez, D.R. Delgado, F. Martínez, A. Jouyban & W.E. Acree, Jr. Solubility of naproxen in ethyl acetate + ethanol mixtures at several temperatures and correlation with the Jouyban-Acree model. Fluid Phase Equilib., 320, 49–55 (2012). Doi: https://doi.org/10.1016/j.fluid.2012.02.009
45. K.C. Mercado, G.A. Rodríguez, D.R. Delgado, F. Martínez & A. Romdhani. Solution thermo-dynamics of methocarbamol in some ethanol + water mixtures. Quim. Nova, 35(10), 1967–1972 (2012). Doi: https://doi.org/10.1590/S0100-40422012001000015
46. D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, F. Martínez & A. Jouyban. Preferential solvation of methocarbamol in aqueous binary co-solvent mixtures at 298.15 K. Phys. Chem. Liq., 52(6), 726–737 (2014). Doi: https://doi.org/10.1080/00319104.2014.915755
47. Z.J. Cárdenas, D.M. Jiménez, G.A. Rodríguez, D.R. Delgado, F. Martínez, M. Khoubnasabjafari & A. Jouyban. Solubility of methocarbamol in some cosolvent + water mixtures at 298.15 K and correlation with the Jouyban-Acree model. J. Mol. Liq., 188, 162–166 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.10.012
48. A.E. Garrido-Romero, J.L. Aroca-Trujillo, R. Rodriguez-Serrezuela, D.I. Caviedes-Rubio & D.R. Delgado. Thermodynamic study of the solubility of benzoin in ethyl acetate (1) + ethanol (2) mixtures. J. Eng. Appl. Sci., 14(14), 4951–4960 (2019). URL: https://account.makhillpublications.co/files/published-files/mak-jeas/2019/14-4951-4960.pdf
49. M.d.M. Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban & F. Martínez. Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. J. Mol. Liq., 204, 132–136 (2015). Doi: https://doi.org/10.1016/j.molliq.2015.01.047
50. D.R. Delgado & F. Martínez. Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. J. Mol. Liq., 193, 152–159 (2014). Doi: https://doi.org/10.1016/j.molliq.2013.12.021
51. D.R. Delgado & F. Martínez. Solution thermodynamics of sulfadiazine in some ethanol + water mixtures. J. Mol. Liq., 187, 99–105 (2013). Doi: https://doi.org/10.1016/j.molliq.2013.06.011
52. D.R. Delgado & F. Martínez. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib., 379, 128–138 (2014). Doi: https://doi.org/10.1016/j.fluid.2014.07.013
53. D.R. Delgado, O. Bahamón-Hernandez, N.E. Cerquera, C.P. Ortiz, F. Martínez, E. Rahimpour, A. Jouyban & W.E. Acree, Jr. Solubility of sulfadiazine in (acetonitrile + methanol) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvation. J. Mol. Liq., 322, 114979 (2021). Doi: https://doi.org/10.1016/j.molliq.2020.114979
54. D.R. Delgado & F. Martínez. Thermodynamic study of the solubility of sodium sulfadiazine in some ethanol + water cosolvent mixtures. Vitae, 17(2), 191–198 (2010). Doi: https://doi.org/10.17533/udea.vitae.6344
55. A.M. Cruz-González, M.S. Vargas-Santana, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, F. Martínez, A. Jouyban & W.E. Acree, Jr. Solubility of sulfadiazine in (ethylene glycol + water) mixtures: Measurement, correlation, thermodynamics and preferential solvation. J. Mol. Liq., 323, 115058 (2021). Doi: https://doi.org/10.1016/j.molliq.2020.115058
56. D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.Á. Peña & F. Martínez. Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane+water cosolvent mixtures. Fluid Phase Equilib., 397, 26–36 (2015). Doi: https://doi.org/10.1016/j.fluid.2015.03.046
57. D.R. Delgado, C.P. Ortiz, F. Martínez & A. Jouyban. Equilibrium solubility of sulfadiazine in (acetonitrile + ethanol) mixtures: Determination, correlation, dissolution thermodynamics, and preferential solvation. Int. J. Thermophys., 45, 129 (2024). Doi: https://doi.org/10.1007/s10765-024-03405-4
58. C.F. Trujillo-Trujillo, F. Angarita-Reina, M. Herrera, C.P. Ortiz, R.E. Cardenas-Torres, F. Martinez & D.R. Delgado. Thermodynamic analysis of the solubility of sulfadiazine in (acetonitrile 1-propanol) cosolvent mixtures from 278.15 K to 318.15 K. Liquids, 3(1), 7–18 (2023). Doi: https://doi.org/10.3390/liquids3010002
59. M.S. Vargas-Santana, A.M. Cruz-González, N.E. Cerquera, A.S. Escobar-Rodriguez, R.E. Cardenas, O. Calderón-Losada, C.P. Ortiz & D.R. Delgado. Extended Hildebrand solubility approach and Yalkowsky-Roseman model for estimating the solubility of sulfadiazine and sulfa-methazine in some {ethylene glycol (1) + water (2)} mixtures at several temperatures. Rev. Colomb. Cienc. Quím. Farm., 50(3), 812–836 (2022). Doi: https://doi.org/10.15446/rcciquifa.v50n3.100240
60. D.R. Delgado & F. Martínez. Solution thermodynamics and preferential solvation of sulfamerazine in methanol + water mixtures. J. Solution Chem., 44(2), 360–377 (2015). Doi: https://doi.org/10.1007/s10953-015-0317-1
61. C.P. Ortiz, D.I. Caviedes-Rubio, F. Martinez & D.R. Delgado. Solubility of sulfamerazine in acetonitrile + ethanol cosolvent mixtures: Thermodynamics and modeling. Molecules, 29(22), 5294 (2024). Doi: https://doi.org/10.3390/molecules29225294
62. D.R. Delgado & F. Martínez. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib., 360, 88–96 (360). Doi: https://doi.org/10.1016/j.fluid.2013.09.018
63. R.E. Cárdenas-Torres, C.P. Ortiz, W.E. Acree, Jr., A. Jouyban, F. Martínez & D.R. Delgado. Thermodynamic study and preferential solvation of sulfamerazine in acetonitrile + methanol cosolvent mixtures at different temperatures. J. Mol. Liq., 349, 118172 (2022). Doi: https://doi.org/10.1016/j.molliq.2021.118172
64. M.S. Vargas-Santana, A.M. Cruz-González, C.P. Ortiz, D.R. Delgado, F. Martínez, M.Á. Peña, W.E. Acree & A. Jouyban. Solubility of sulfamerazine in (ethylene glycol + water) mixtures: Measurement, correlation, dissolution thermodynamics and preferential solvation. J. Mol. Liq., 337, 116330 (2021). Doi: https://doi.org/10.1016/j.molliq.2021.116330
65. C.P. Ortiz, R.E. Cardenas-Torres, M. Herrera & D.R. Delgado. Numerical analysis of sulfamerazine solubility in acetonitrile + 1-propanol cosolvent mixtures at different temperatures. Sustainability, 15(8), 6596 (2023). Doi: https://doi.org/10.3390/su15086596
66. J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban & D.R. Delgado. Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures. J. Mol. Liq., 293, 111507 (2019). https://doi.org/10.1016/j.molliq.2019.111507
67. D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban & W.E. Acree, Jr. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J. Chem. Thermodyn., 97, 264–276 (2016). Doi: https://doi.org/10.1016/j.jct.2016.02.002
68. A. Aydi, C.P. Ortiz, D.I. Caviedes-Rubio, C. Ayadi, S. Hbaieb & D.R. Delgado. Solution thermodynamics and preferential solvation of sulfamethazine in ethylene glycol + water mixtures. J. Taiwan Inst. Chem. Eng., 118, 68–77 (2021). Doi: https://doi.org/10.1016/j.jtice.2020.12.031
69. J.H. Blanco-Márquez, D.I. Caviedes Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez & D.R. Delgado. Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures. Fluid Phase Equilib., 505, 112361 (2020). Doi: https://doi.org/10.1016/j.fluid.2019.112361
70. D.R. Delgado, J.K. Castro-Camacho, C.P. Ortiz, D.I. Caviedes-Rubio & F. Martinez. Dissolution thermodynamics of the solubility of sulfamethazine in (acetonitrile + 1-propanol) mixtures. Pharmaceuticals, 17(12), 1594 (2024). Doi: https://doi.org/10.3390/ph17121594
71. C.P. Ortiz, R.E. Cardenas-Torres, F. Martínez & D.R. Delgado. Solubility of sulfamethazine in the binary mixture of acetonitrile + methanol from 278.15 to 318.15 K: Measurement, dissolution thermodynamics, preferential solvation, and correlation. Molecules, 26(24), 7588 (2021). Doi: https://doi.org/10.3390/molecules26247588
72. I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban & W.E. Acree, Jr. Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation and solute volumetric contribution at saturation. J. Mol. Liq., 297, 111889 (2020). Doi: https://doi.org/10.1016/j.molliq.2019.111889
73. D.R. Delgado, G.A. Rodríguez & F. Martínez. Thermodynamic study of the solubility of sulfa-pyridine in some ethanol + water mixtures. J. Mol. Liq., 177, 156–161 (2013). Doi: https://doi.org/10.1016/j.molliq.2012.11.001
74. D.R. Delgado, M.A. Peña, F. Martínez, A. Jouyban & W.E. Acree, Jr. Further numerical analyses on the solubility of sulfapyridine in ethanol + water mixtures. Pharm. Sci. (Tabriz), 22(3), 143–152 (2016). Doi: https://doi.org/10.15171/PS.2016.24
75. D.R. Delgado, G.A. Rodríguez, A.R. Holguín, F. Martínez & A. Jouyban. Solubility of sulfa-pyridine in propylene glycol + water mixtures and correlation with the Jouyban-Acree model. Fluid Phase Equilib., 341, 86–95 (2013). Doi: https://doi.org/10.1016/j.fluid.2012.12.017
76. D.R. Delgado, A. Romdhani & F. Martínez. Solubility of sulfamethizole in some propylene glycol + water mixtures at several temperatures. Fluid Phase Equilib., 322–323, 113–119 (2012). Doi: https://doi.org/10.1016/j.fluid.2012.03.014
77. D.R. Delgado, A. Romdhani & F. Martínez. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat. Am. J. Pharm., 30(10), 2024–2030 (2011). URL: https://www.latamjpharm.org/resumenes/30/10/LAJOP_30_10_1_23.pdf
78. C.P. Ortíz, R.E. Cardenas-Torres, D.I. Caviedes-Rubio, S.D.J. Polania-Orozco & D.R. Delgado. Thermodynamic analysis and preferential solvation of sulfanilamide in different cosolvent mixtures. Phys. Chem. Liq., 60(1), 9–24 (2022). Doi: https://doi.org/10.1080/00319104.2021.1888382
79. A.M. Romero-Nieto, D.I. Caviedes-Rubio, J. Polania-Orozco, N.E. Cerquera & D.R. Delgado. Temperature and cosolvent composition effects in the solubility of methylparaben in acetonitrile + water mixtures. Phys. Chem. Liq., 58(6), 722–735 (2020). Doi: https://doi.org/10.1080/00319104.2019.1636379
80. A.M. Romero-Nieto, N.E. Cerquera, F. Martínez & D.R. Delgado. Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures. J. Mol. Liq., 287, 110894 (2019). Doi: https://doi.org/10.1016/j.molliq.2019.110894
81. A.M. Romero-Nieto, N.E. Cerquera & D.R. Delgado. Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution. Rev. Colomb. Cienc. Quim. Farm., 48(2), 332–347 (2019). Doi: https://doi.org/10.15446/rcciquifa.v48n2.82702
82. C.P. Ortiz, R.E. Cardenas-Torres, M. Herrera & D.R. Delgado. Thermodynamic analysis of the solubility of propylparaben in acetonitrile–water cosolvent mixtures. Sustainability, 15(6), 4795 (2023). Doi: https://doi.org/10.3390/SU15064795
83. J.L. Gómez, G.A. Rodríguez, D.M. Cristancho, D.R. Delgado & F. Martínez. Solution thermo-dynamics of nimodipine in some PEG 400 + ethanol mixtures. Phys. Chem. Liq., 51(5), 651–662 (2013). Doi: https://doi.org/10.1080/00319104.2013.771262
84. D.R. Delgado, M. Vergara & R.E. Cardenas-Torres. Database of drug solubility in cosolvent mixtures at different temperatures. Mendeley Data, V1, 2025. Doi: https://doi.org/10.17632/g686s23sy5.1
85. M. Vergara-Roa, R.E. Cardenas-Torres & D.R. Delgado. Artificial neural network modeling of drug solubility in cosolvent systems. Mendeley Data, V1, 2025. Doi: https://doi.org/10.17632/3ztcsxvjyb.1
86. Y. Marcus. The Properties of Solvents. John Wiley & Sons Ltd, Chichester (UK), 1998.
87. A.F.M. Barton. CRC Handbook of Solubility Parameters and Other Cohesion Parameters. 2nd ed. CRC Press, Boca Raton (FL), 1991.
88. G. Scatchard. Solutions of nonelectrolytes. Annu. Rev. Phys. Chem., 3, 259–274 (1952). Doi: https://doi.org/10.1146/annurev.pc.03.100152.001355
89. Y.-G. Li, T. Teng, J.-F. Lu, G. Chen & J.-D. Li. A study of Scatchard-Hildebrand solution theory for metal solvent extraction systems. Fluid Phase Equilib., 30, 297–306 (1986). Doi: https://doi.org/10.1016/0378-3812(86)80063-2
90. J.T. Rubino & S.H. Yalkowsky. Cosolvency and cosolvent polarity. Pharm. Res., 4(3), 220–230 (1987). Doi: https://doi.org/10.1023/A:1016456127893
91. C.M. Hansen. The universality of the solubility parameter. Ind. Eng. Chem. Product Res. Dev., 8(1), 2–11 (1969). Doi: https://doi.org/10.1021/i360029a002
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




