Publicado
Recent microfluidic applications in Pharmaceutical Sciences and its potential utility in bottom-up concepts of Quality by Design
Aplicaciones recientes de microfluidos en las ciencias farmacéuticas y su utilidad potencial en conceptos “abajo-hacia-arriba” asociados a la Calidad Desde el Diseño
Aplicações recentes da microfluídica nas Ciências Farmacêuticas e sua potencial utilidade em conceitos bottom-up de Qualidade por Design
DOI:
https://doi.org/10.15446/rcciquifa.v55n1.122915Palabras clave:
Microfluidics, medical diagnostics, drug delivery system, drug discovery, Organ-on-a-chip, Quality by Design, bottom-up approach (en)Microfluidos, diagnósticos médicos, sistemas de liberación de fármacos, descubrimiento de fármacos, Órganos-en-Chips, Calidad desde el Diseño, aproximación “abajo-hacia-arriba” (es)
Microfluídica, diagnóstico médico, sistema de liberação de fármacos, descoberta de fármacos, órgão-em-um-chip, Qualidade por Design, abordagem bottom-up (pt)
Descargas
Introduction: Microfluidic science has significantly permeated biomedical sector since the 1990s, today they have potential application in quality-based design of pharmaceutical products using bottom-up approaches. Methodology: In this article, a review of some articles published from 2019 to 2025 is made to show the utility that microfluidics can have in each stage of medicines development. To demonstrate the capabilities of micro systems some examples are summarized, highlighting the qualities that may be attractive from the Quality by Design (QbD) methodology point of view; In order to segment the information, the topics are classified into four groups: medical diagnosis, production of drug delivery systems, drug discovery and organ-on-a-chip technology. Results: Since microfluidics make it possible to produce different types of nanostructured formulations and control their final properties, when increasing the conceptual basis on the mechanisms of diseases and evaluate the effect of drugs when exposed to human cells, it is possible to spread its potential in an integral way to all development phases of pharmaceutical products.
Introducción: La ciencia de microfluidos ha permeado de forma importante al sector biomédico desde 1990, hoy en día tienen aplicación potencial en el diseño de productos farmacéuticos basado en la calidad, mediante el enfoque de abajo hacia arriba. Metodología: En este artículo se hace una revisión de algunos artículos publicados desde 2019 hasta 2025 con la finalidad de mostrar la utilidad que pueden tener los microfluidos en cada una de las etapas del desarrollo de medicamentos. Para demostrar las capacidades que tienen las microplataformas se resumen algunos ejemplos destacando las cualidades que pueden ser atractivas desde el punto de vista de la metodología de Calidad desde el Diseño (QbD). Con la finalidad de segmentar la información, se clasifican los temas dentro de cuatro grupos: diagnósticos médicos, producción de sistemas de liberación de fármacos, descubrimiento de fármacos y tecnología de órgano-en-chip. Resultados: Dado que los microfluidos permiten producir diferentes tipos de formulaciones nanoestructuradas y controlar sus propiedades finales, al incrementar las bases conceptuales sobre los mecanismos de las enfermedades y evaluar el efecto de los medicamentos al exponerlos a células humanas, es posible extender su uso de forma integral a todas las etapas del diseño de productos farmacéuticos.
Introdução: A ciência da microfluídica permeou significativamente o setor biomédico desde a década de 1990 e, atualmente, apresenta potencial aplicação no design baseado na qualidade de produtos farmacêuticos, utilizando abordagens bottom-up. Metodologia: Este artigo apresenta uma revisão de artigos publicados entre 2019 e 2025 para demonstrar a utilidade da microfluídica em cada etapa do desenvolvimento de medicamentos. Para ilustrar as capacidades dos microssistemas, alguns exemplos são resumidos, destacando as qualidades que podem ser atrativas sob a perspectiva da metodologia de Qualidade por Design (QbD). Para segmentar as informações, os tópicos são classificados em quatro grupos: diagnóstico médico, produção de sistemas de liberação de fármacos, descoberta de fármacos e tecnologia de órgãos em chip. Resultados: Como a microfluídica possibilita a produção de diferentes tipos de formulações nanoestruturadas e o controle de suas propriedades finais, ao ampliar a base conceitual sobre os mecanismos das doenças e avaliar o efeito de fármacos quando expostos a células humanas, é possível estender seu potencial de forma integral a todas as fases de desenvolvimento de produtos farmacêuticos.
Referencias
1. P. Tabeling & S. Chen. Introduction to Microfluidics. Oxford University Press, Oxford, 2005. https://doi.org/10.1093/oso/9780198568643.001.0001
2. J.-C. Charpentier. Four main objectives for the future of chemical and process engineering main-ly concerned by the science and technologies of new materials production. Chemical Engineering Journal, 107(1-3), 3–17 (2005). https://doi.org/10.1016/j.cej.2004.12.004
3. S. Colombo, M. Beck-Broichsitter, J.P. Bøtker, M. Malmsten, J. Rantanen & A. Bohr. Transform-ing nanomedicine manufacturing toward Quality by Design and microfluidics. Advanced Drug Delivery Reviews, 128, 115–131 (2018). https://doi.org/10.1016/j.addr.2018.04.004
4. S. Ghosh, D. Maity, A. Chowdhury, S.K. Roy & C. Giri. Efficient fault detection and diagnosis of digital microfluidic biochip using multiple electrodes actuation. 2020 IEEE International Test Conference on India (ITC India). Bangalore, India, 2020; pp. 1–4. https://doi.org/10.1109/itcindia49857.2020.9171793
5. E. Di Giampaolo & A.D. Natale. A configurable microwave microfluidic sensor for medical di-agnosis and chemical analysis. 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). Rome, Italy, 2019; pp. 4194–4197. https://doi.org/10.1109/piers-spring46901.2019.9017489
6. Z. Ying, L. Qiao, B. Liu, L. Gao & P. Zhang. Development of a microfluidic wearable electro-chemical sensor for the non-invasive monitoring of oxidative stress biomarkers in human sweat. Biosensors and Bioelectronics, 261, 116502 (2024). https://doi.org/10.1016/j.bios.2024.116502
7. Z. Izadifar, B. Charrez, M. Almeida, S. Robben, K. Pilobello, J. van der Graaf-Mas, et al. Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at con-trolled oxygen levels. Biosensors and Bioelectronics, 265, 116683 (2024). https://doi.org/10.1016/j.bios.2024.116683
8. T.-H. Lu, N.-J. Chiang, C.-J. Huang, P. Gopinathan, H.-C. Tu, Y.-C. Tsai, Y.-S. Shan, S.-C. Hung & G.-B. Lee. An integrated microfluidic platform for cholangiocarcinoma diagnosis from clinical bile juice samples by utilizing multiple affinity reagents. 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS). San Diego, (CA), 2020; pp. 261–264. https://doi.org/10.1109/nems50311.2020.9265566
9. D. Maji, S. Pourang, U. D. S. Sekhon, A. S. Gupta, M. A. Suster & P. Mohseni. Toward diagnosis of platelet loss in trauma injury using a microfluidic dielectric sensor. 2019 IEEE Sen-sors. Montreal (QC), 2019; pp. 1–4. https://doi.org/10.1109/sensors43011.2019.8956491
10. Z. Ma, J. Xia, N. Upreti, E. David, J. Rufo, Y. Gu, et al. An acoustofluidic device for the auto-mated separation of platelet-reduced plasma from whole blood. Microsystems & Nanoengineering, 10(1), 83 (2024). https://doi.org/10.1038/s41378-024-00707-3
11. Y.-L. Fang, W.-B. Lee, C.-H. Wang, C.-C. Chien, H.-L. You, M.S. Lee & G.-B. Lee. An integrat-ed microfluidic system for fast isolation of bacteria in human whole blood for diagnosis of sepsis. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). Vancouver (BC), Canada, 2020; pp. 1014–1017. https://doi.org/10.1109/mems46641.2020.9056344
12. H.-s. Kim, N. Abbas & S. Shin. A rapid diagnosis of SARS-CoV-2 using DNA hydrogel for-mation on microfluidic pores. Biosensors and Bioelectronics, 177, 113005 (2021). https://doi.org/10.1016/j.bios.2021.113005
13. H.Q. Nguyen, V.D. Nguyen, V.M. Phan & T.S. Seo. A novel point-of-care platform for rapid SARS-CoV-2 detection utilizing an all-in-one 3D-printed microfluidic cartridge and IoT technolo-gy», Sensors and Actuators B: Chemical, 410, 135632 (2024). https://doi.org/10.1016/j.snb.2024.135632
14. L. Zhu, H. Huang, M.M.-C. Cheng & P.-Y. Chen. Compact, flexible harmonic transponder sen-sor with multiplexed sensing capabilities for rapid, contactless microfluidic diagnosis. IEEE Transactions on Microwave Theory and Techniques, 68(11), 4846–4854 (2020). https://doi.org/10.1109/tmtt.2020.3006286
15. A.C.Q. Silva, C. Vilela, H.A. Santos, A.J.D. Silvestre & C.S.R. Freire. Recent trends on the de-velopment of systems for cancer diagnosis and treatment by microfluidic technology. Applied Materials Today, 18, 100450 (2020). https://doi.org/10.1016/j.apmt.2019.100450
16. H. Tavakoli, W. Zhou, L. Ma, S. Perez, A. Ibarra, F. Xu, S. Zhan & X. Li. Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy. TrAC Trends in Analytical Chemistry, 117, 13–26 (2019). https://doi.org/10.1016/j.trac.2019.05.010
17. C. Tu, B. Huang, J. Zhou, Y. Liang, J. Tian, L. Ji, X. Liang & X. Ye. A microfluidic chip for cell patterning utilizing paired microwells and protein patterns. Micromachines, 8(1), 1 (2016). https://doi.org/10.3390/mi8010001
18. H.S. Rho, Y. Yang, A.T. Hanke, M. Ottens, L.W.M.M. Terstappen & H. Gardeniers. Program-mable v-type valve for cell and particle manipulation in microfluidic devices. Lab on a Chip, 16(2), 305–311 (2016). https://doi.org/10.1039/c5lc01206f
19. L. Armbrecht, G. Gabernet, F. Kurth, J.A. Hiss, G. Schneider & P.S. Dittrich. Characterisation of anticancer peptides at the single-cell level», Lab on a Chip, 17(17), 2933–2940 (2017). https://doi.org/10.1039/c7lc00505a
20. S. Maheswaran, L.V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C.V. Collura, et al. Detection of mutations in EGFR in circulating lung-cancer cells. The New England Journal of Medicine, 359(4), 366–377 (2008). https://doi.org/10.1056/nejmoa0800668
21. W. Sheng, O.O. Ogunwobi, T. Chen, J. Zhang, T.J. George, C. Liu & Z.H. Fan. Capture, re-lease and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab on a Chip, 14(1), 89–98 (2014). https://doi.org/10.1039/c3lc51017d
22. F.G. Ortega, M.A. Fernández-Baldo, M.J. Serrano, G.A. Messina, J.A. Lorente & J. Raba. Epi-thelial cancer biomarker EpCAM determination in peripheral blood samples using a microfluid-ic immunosensor based in silver nanoparticles as platform. Sensors and Actuators B: Chemical, 221, 248–256 (2015). https://doi.org/10.1016/j.snb.2015.06.066
23. H.J. Yoon, A. Shanker, Y. Wang, M. Kozminsky, Q. Jin, N. Palanisamy, et al. Tunable thermal-sensitive polymer-graphene oxide composite for efficient capture and release of viable circulat-ing tumor cells. Advanced Materials, 28(24), 4891–4897 (2016). https://doi.org/10.1002/adma.201600658
24. Y. Wu, C. Wang, Y. Guo, Y. Zhang, X. Zhang, P. Wang, et al. Small extracellular vesicle-based one-step high-throughput microfluidic platform for epithelial ovarian cancer diagnosis. Journal of Nanobiotechnology, 23(1), 278 (2025). https://doi.org/10.1186/s12951-025-03348-4
25. D. Yu, J. Gu, J. Zhang, M. Wang, R. Ji, C. Feng, H.A. Santos, H. Zhang & X. Zhang. Integrat-ed microfluidic chip for neutrophil extracellular vesicle analysis and gastric cancer diagnosis. ACS Nano, 19(10), 10078–10092 (2025). https://doi.org/10.1021/acsnano.4c16894
26. S. Kuang, N.M. Singh, Y. Wu, Y. Shen, W. Ren, L. Tu, K.-T. Yong & P. Song. Role of microflu-idics in accelerating new space missions. Biomicrofluidics, 16(2), 021503 (2022). https://doi.org/10.1063/5.0079819
27. S.-M. Yang, S. Lv, W. Zhang & Y. Cui. Microfluidic point-of-care (POC) devices in early diagno-sis: A review of opportunities and challenges. Sensors, 22(4), 1620 (2022). https://doi.org/10.3390/s22041620
28. H. Bolze, J. Riewe, H. Bunjes, A. Dietzel & T.P. Burg. Continuous production of lipid nanoparti-cles by ultrasound‐assisted microfluidic antisolvent precipitation. Chemical Engineering Technolo-gy, 44(9), 1641–1650 (2021). https://doi.org/10.1002/ceat.202100149
29. S. Patil, A. Pandit, G. Gaikwad, P. Dandekar & R. Jain. Exploring microfluidic platform techni-que for continuous production of pharmaceutical microemulsions. Journal of Pharmaceutical Inno-vation, 16(3), 441–453 (2021). https://doi.org/10.1007/s12247-020-09457-x
30. A.G. Mares, G. Pacassoni, J.S. Marti, S. Pujals & L. Albertazzi. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. PLoS One, 16(6), e0251821 (2021). https://doi.org/10.1371/journal.pone.0251821
31. H.K. Makadia & S.J. Siegel. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377–1397 (2011). https://doi.org/10.3390/polym3031377
32. J.S. Suk, Q. Xu, N. Kim, J. Hanes & L.M. Ensign. PEGylation as a strategy for improving nano-particle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99(Part A), 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
33. D.M. Loy, R. Krzysztoń, U. Lächelt, J.O. Rädler & E. Wagner. Controlling nanoparticle formula-tion: A low-budget prototype for the automation of a microfluidic platform. Processes, 9(1), 129 (2021). https://doi.org/10.3390/pr9010129
34. C. Vasile (editor). Polymeric Nanomaterials for Nanotherapeutics. Micro & nano technologies series. Elsevier, Amsterdam, 2019. https://doi.org/10.1016/c2017-0-00607-9
35. E. Egorov, C. Pieters, H. Korach-Rechtman, J. Shklover & A. Schroeder. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug deliv-ery systems. Drug Delivery and Translational Research, 11(2), 345–352 (2021). https://doi.org/10.1007/s13346-021-00929-2
36. H.A. Santos, J. Riikonen, J. Salonen, E. Mäkilä, T. Heikkilä, T. Laaksonen, L. Peltonen, V.-P. Lehto & J. Hirvonen. In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomaterialia, 6(7), 2721–2731 (2010). https://doi.org/10.1016/j.actbio.2009.12.043
37. H.S. Leong, K.S. Butler, C.J. Brinker, M. Azzawi, S. Conlan, C. Dufés, et al. On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 14(7), 629–635 (2019). https://doi.org/10.1038/s41565-019-0496-9
38. N. Kamaly, Z. Xiao, P.M. Valencia, A.F. Radovic-Moreno & O.C. Farokhzad. Targeted poly-meric therapeutic nanoparticles: design, development and clinical translation. Chemical Society Reviews, 41(7), 2971–3010 (2012). https://doi.org/10.1039/c2cs15344k
39. T. Baby, Y. Liu, G. Yang, D. Chen & C.-X. Zhao. Microfluidic synthesis of curcumin loaded polymer nanoparticles with tunable drug loading and pH-triggered release. Journal of Colloid and Interface Science, 594, 474–484 (2021). https://doi.org/10.1016/j.jcis.2021.03.035
40. A.S. Lari, P. Zahedi, H. Ghourchian & A. Khatibi. Microfluidic-based synthesized carboxyme-thyl chitosan nanoparticles containing metformin for diabetes therapy: In vitro and in vivo as-sessments. Carbohydrate Polymers, 261, 117889 (2021). https://doi.org/10.1016/j.carbpol.2021.117889
41. M.N. Abu-Hajleh, A. AL‐Samydai & E.A.S. Al‐Dujaili. Nano, micro particulate and cosmetic delivery systems of polylactic acid: A mini review. Journal of Cosmetic Dermatology, 19(11), 2805–2811 (2020). https://doi.org/10.1111/jocd.13696
42. N. Zoratto, E. Montanari, M. Viola, J. Wang, T. Coviello, C. Di Meo & P. Matricardi. Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydrate Polymers, 266, 118119 (2021). https://doi.org/10.1016/j.carbpol.2021.118119
43. M. Tiboni, M. Tiboni, A. Pierro, M. Del Papa, S. Sparaventi, M. Cespi & L. Casettari. Microflu-idics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. Inter-national Journal of Pharmaceutics, 599, 120464 (2021). https://doi.org/10.1016/j.ijpharm.2021.120464
44. L. Kang, B.G. Chung, R. Langer & A. Khademhosseini. Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discovery Today, 13(1-2), 1-13 (2008). https://doi.org/10.1016/j.drudis.2007.10.003
45. F. Bonanini, R. Dinkelberg, M. Caro-Torregrosa, N. Kortekaas, T.M.S. Hagens, S. Treillard, D. Kurek, V. van Duinen, P. Vulto & K. Bircsak. A microvascularized in vitro liver model for dis-ease modeling and drug discovery. Biofabrication, 17(1), 015007 (2025). https://doi.org/10.1088/1758-5090/ad818a
46. M. Mistretta, M. Cimino, P. Campagne, S. Volant, E. Kornobis, O. Hebert, et al. Dynamic micro-fluidic single-cell screening identifies pheno-tuning compounds to potentiate tuberculosis the-rapy. Nature Communications, 15(1), 4175 (2024). https://doi.org/10.1038/s41467-024-48269-2
47. S.A. Langhans. Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opin-ion on Drug Discovery, 16(8), 841–850 (2021). https://doi.org/10.1080/17460441.2021.1912731
48. S. Momtahen, M. Taajobian & y A. Jahanian. Drug discovery applications: A customized digital microfluidic biochip architecture/CAD flow. IEEE Nanotechnology Magazine, 13(5), 25–34 (2019). https://doi.org/10.1109/mnano.2019.2927773
49. M. Torabinia, U.S. Dakarapu, P. Asgari, J. Jeon & H. Moon. Electrowetting-on-dielectric (EWOD) digital microfluidic device for in-line workup in organic reactions: A critical step in the drug discovery work cycle. Sensors and Actuators B: Chemical, 330, 129252 (2021). https://doi.org/10.1016/j.snb.2020.129252
50. M.A. Matilla. Facing crises in the 21st century: microfluidics approaches for antibiotic discovery. Microbial Biotechnology, 15(2), 392–394 (2022). https://doi.org/10.1111/1751-7915.13908
51. M. Oberpaul, S. Brinkmann, M. Marner, S. Mihajlovic, B. Leis, M.A. Patras, et al. Combination of high‐throughput microfluidics and FACS technologies to leverage the numbers game in natu-ral product discovery. Microbial Biotechnology, 15(2), 415–430 (2022). https://doi.org/10.1111/1751-7915.13872
52. S. Kheiri, I. Yakavets, J. Cruickshank, F. Ahmadi, H.K. Berman, D.W. Cescon, E.W.K. Young & E. Kumacheva. Microfluidic platform for generating and releasing patient-derived cancer organ-oids with diverse shapes: Insight into shape-dependent tumor growth. Advanced Materials, 36(44), 2410547 (2024). https://doi.org/10.1002/adma.202410547
53. M. Ohbuchi, M. Shibuta, K. Tetsuka, H. Sasaki-Iwaoka, M. Oishi, F. Shimizu & Y. Nagasaka. Modeling of blood–brain barrier (BBB) dysfunction and immune cell migration using human BBB-on-a-chip for drug discovery research. International Journal of Molecular Sciences, 25(12), 6496 (2024). https://doi.org/10.3390/ijms25126496
54. Z. Gao, Z. Du, Y. Hou, K. Hua, P. Tu, X. Ai & Y. Jiang. A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dy-namic myocardial injury. Acta Pharmaceutica Sinica B, 14(12), 5393–5406 (2024). https://doi.org/10.1016/j.apsb.2024.11.004
55. L.K. Huff, C.M. Amurgis, L.E. Kokai & R.D. Abbott. Optimization and validation of a fat-on-a-chip model for non-invasive therapeutic drug discovery. Frontiers in Bioengineering and Biotech-nology, 12, 1404327 (2024). https://doi.org/10.3389/fbioe.2024.1404327
56. G. Kimourtzis & R. Raouf. A microfluidic model of the first sensory synapse for analgesic target discovery. Molecular Pain, 20, 17448069241293286 (2024). https://doi.org/10.1177/17448069241293286
57. R.G. Willaert. Micro- and nanoscale approaches in antifungal drug discovery. Fermentation, 4(2), 43 (2018). https://doi.org/10.3390/fermentation4020043
58. E.S. Nelson. Design principles for microfluidic biomedical diagnostics in space. In: R. Fazel (edi-tor). Biomedical Engineering - From Theory to Applications. InTech, London, 2011. https://doi.org/10.5772/21669
59. Z. Li, J. Hui, P. Yang & H. Mao. Microfluidic organ-on-a-chip system for disease modeling and drug development. Biosensors, 12(6), 370 (2022). https://doi.org/10.3390/bios12060370
60. F. Shahabipour, S. Satta, M. Mahmoodi, A. Sun, N.R. de Barros, S. Li, T. Hsiai & N. Ashamma-khi. Engineering organ-on-a-chip systems to model viral infections. Biofabrication, 15(2), 022001 (2022). https://doi.org/10.1088/1758-5090/ac6538
61. M.A.M. Jahromi, A. Abdoli, M. Rahmanian, H. Bardania, M. Bayandori, S.M.M. Basri, A. Kal-basi, A.R. Aref, M. Karimi & M.R. Hamblin. Microfluidic brain-on-a-chip: Perspectives for mim-icking neural system disorders. Molecular Neurobiology, 56(12), 8489–8512 (2019). https://doi.org/10.1007/s12035-019-01653-2
62. K. Achberger, C. Probst, J. Haderspeck, S. Bolz, J. Rogal, J. Chuchuy, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human reti-na-on-a-chip platform. eLife, 8, e46188 (2019). https://doi.org/10.7554/elife.46188
63. K. Goluba, V. Parfejevs, E. Rostoka, K. Jekabsons, I. Blake, A. Neimane, et al. Personalized PDAC chip with functional endothelial barrier for tumour biomarker detection: A platform for precision medicine applications. Materials Today Bio, 29, 101262 (2024). https://doi.org/10.1016/j.mtbio.2024.101262
64. N. Franzen, W.H. van Harten, V.P. Retèl, P. Loskill, J. van den Eijnden-van Raaij & M. IJzer-man. Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discovery Today, 24(9), 1720–1724 (2019). https://doi.org/10.1016/j.drudis.2019.06.003
65. X. Chen, Y.S. Zhang, X. Zhang & C. Liu. Organ-on-a-chip platforms for accelerating the evalua-tion of nanomedicine. Bioactive Materials, 6(4), 1012–1027 (2021). https://doi.org/10.1016/j.bioactmat.2020.09.022
66. C.L. Thompson, S. Fu, H.K. Heywood, M.M. Knight & S.D. Thorpe. Mechanical stimulation: A crucial element of organ-on-chip models. Frontiers in Bioengineering and Biotechnology, 8, 602646 (2020). https://doi.org/10.3389/fbioe.2020.602646
67. R.E. Young & D.D. Huh. Organ-on-a-chip technology for the study of the female reproductive system. Advanced Drug Delivery Reviews, 173, 461–478 (2021). https://doi.org/10.1016/j.addr.2021.03.010
68. A. Ahvaraki, E. Gheytanchi, E. Behroodi, H. Latifi, F. Vakhshiteh, Z. Bagheri & Z. Madjd. Ad-vanced co-culture 3D breast cancer model to study cell death and nanodrug sensitivity of tumor spheroids. Biochemical Engineering Journal, 209, 109400 (2024). https://doi.org/10.1016/j.bej.2024.109400
69. L. Zheng, Y. Wang, Y. Zhang, Z. Chai, S. Liu, B. Wang, B. Dai & D. Zhang. Investigation of PM2.5-induced carcinogenic effects through mediation of ErbB family based on DNA methyla-tion and transcriptomics analysis by a lung-mimicking microfluidic platform. Ecotoxicology and Environmental Safety, 248, 114318 (2022). https://doi.org/10.1016/j.ecoenv.2022.114318
70. R.Z. Shafagh, S. Youhanna, J. Keulen, J.X. Shen, N. Taebnia, L.C. Preiss, et al. Bioengineered pancreas–liver crosstalk in a microfluidic coculture chip identifies human metabolic response signatures in prediabetic hyperglycemia. Advanced Science (Weinheim), 9(34), 2203368 (2022). https://doi.org/10.1002/advs.202203368
71. S.R. Li, R.E. Gulieva, L. Helms, N.M. Cruz, T. Vincent, H. Fu, J. Himmelfarb & B.S. Freedman. Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease. Nature Communications, 13(1), 7918 (2022). https://doi.org/10.1038/s41467-022-35537-2
72. M. Stiefbold, H. Zhang & L.Q. Wan. Engineered platforms for mimicking cardiac development and drug screening. Cellular and Molecular Life Sciences, 81(1), 197 (2024). https://doi.org/10.1007/s00018-024-05231-1
73. Y. Huang, X. Wu, Y. Xu, N. Yang, P. Xi, Y. Wang, Y. Zhu & X. Chen. Organoids/organs-on-chips towards biomimetic human artificial skin. Burns & Trauma, 13, tkaf029 (2025). https://doi.org/10.1093/burnst/tkaf029
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2026 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




