Publicado
Cancer drug therapy by Gemcitabine derivatives with PEG linker for gynecological disease, beside speech therapy in implementation of biomedical caring of post-operative
Terapia oncológica con derivados de gemcitabina con enlace PEG para enfermedades ginecológicas, además de terapia del habla en la implementación de cuidados biomédicos postoperatorios
Terapia medicamentosa contra o câncer com derivados de gencitabina com ligante PEG para doenças ginecológicas, além de terapia fonoaudiológica na implementação do cuidado biomédico pós-operatório
DOI:
https://doi.org/10.15446/rcciquifa.v55n1.125080Palabras clave:
Gemcitabine derivatives, ERAS guidelines, rehabilitation after surgery, gynecological cancer, post- operative, biomedical caring, oncology, genome map (en)Derivados de gemcitabina, protocolos ERAS, rehabilitación posquirúrgica, cáncer ginecológico, posoperatorio, cuidados biomédicos, oncología, mapeo genómico (es)
Derivados de gencitabina, diretrizes ERAS, reabilitação pós-cirúrgica, câncer ginecológico, pós-operatório, cuidados biomédicos, oncologia, mapeamento genômico (pt)
Descargas
Background: Although Gemcitabine is applied for chemotherapy as an important drug for breast, head and neck, lung, bladder, as well as acute lymphocytic leukemia, non-Hodgkin's lymphoma, osteosarcoma, and choroid carcinoma, we found derivatives combination of Gemcitabine enable to increase the effectiveness for cancer treatment significantly and these derivatives drugs can be used for decreasing desmoids tumor in the treatment of aggressive fibromatosis. Aim: Therefore, our goal was based on analyzing of a series of gemcitabine derivatives containing imine structure (G1-G5), which can be synthesized through reaction of gemcitabine with several aromatic aldehydes for this research and any further activities such as drug design or drug delivery. Materials and methods: Furthermore, the structures of the imine derivatives were proved via CHNS/O elemental analysis, FTIR and NMR spectroscopy, which all measurements confirmed the imine derivatives of α-glucosidase inhibition. Results: Compound (G5) exhibited higher therapeutic indices, representing possible promising roles. We used gemcitabine derivatives containing Schiff base structure (G5) for patient that could be lead a new design in this study of novel α-glucosidase inhibitor. Conclusions: surgery disrupts the physiological balance of the human body and causes great stress and changes hormonal, metabolic, immune and nervous functions, using this drug (G5) during recovery after surgery (ERAS) is a multitasking care process that preserves the normal physiological state and reduces surgical complications of surgery
Antecedentes: Si bien la gemcitabina se utiliza en quimioterapia como fármaco importante para el cáncer de mama, cabeza y cuello, pulmón, vejiga, leucemia linfoblástica aguda, linfoma no Hodgkin, osteosarcoma y carcinoma coroideo, hemos descubierto que la combinación de derivados de gemcitabina permite aumentar significativamente la eficacia del tratamiento oncológico. Estos derivados también pueden utilizarse para reducir el tumor desmoide en el tratamiento de la fibromatosis agresiva. Objetivo: Por lo tanto, nuestro objetivo se basó en el análisis de una serie de derivados de gemcitabina con estructura imina (G1-G5), sintetizados mediante la reacción de gemcitabina con diversos aldehídos aromáticos, para esta investigación y otras actividades como el diseño o la administración de fármacos. Materiales y métodos: Las estructuras de los derivados de imina se confirmaron mediante análisis elemental CHNS/O, espectroscopía FTIR y RMN, mediciones que corroboraron la inhibición de la α-glucosidasa por parte de estos derivados. Resultados: El compuesto (G5) mostró índices terapéuticos superiores, lo que sugiere posibles aplicaciones prometedoras. En este estudio, utilizamos derivados de gemcitabina con estructura de base de Schiff (G5) para pacientes que podrían ser candidatos para un nuevo diseño de inhibidor de la α-glucosidasa. Conclusiones: La cirugía altera el equilibrio fisiológico del cuerpo humano, provoca un gran estrés y cambios en las funciones hormonales, metabólicas, inmunitarias y nerviosas. El uso de este fármaco (G5) durante la recuperación posquirúrgica (ERAS) constituye un proceso de cuidados integrales que preserva el estado fisiológico normal y reduce las complicaciones quirúrgicas.
Contexto: Embora a gencitabina seja utilizada na quimioterapia como um importante medicamento para câncer de mama, cabeça e pescoço, pulmão, bexiga, bem como leucemia linfoblástica aguda, linfoma não Hodgkin, osteossarcoma e carcinoma de coroide, descobrimos que a combinação de derivados de gencitabina permite aumentar significativamente a eficácia do tratamento do câncer e que esses derivados podem ser usados para reduzir o tumor desmoide no tratamento da fibromatose agressiva. Objetivo: Portanto, nosso objetivo foi analisar uma série de derivados de gencitabina contendo estrutura imina (G1-G5), que podem ser sintetizados por meio da reação da gencitabina com diversos aldeídos aromáticos, para esta pesquisa e quaisquer atividades futuras, como o planejamento ou a administração de fármacos. Materiais e métodos: Além disso, as estruturas dos derivados de imina foram comprovadas por meio de análise elementar CHNS/O, espectroscopia FTIR e RMN, cujas medições confirmaram a inibição da α-glicosidase pelos derivados de imina. Resultados: O composto (G5) apresentou índices terapêuticos mais elevados, representando possíveis aplicações promissoras. Utilizamos derivados de gencitabina contendo estrutura de base de Schiff (G5) em pacientes, o que pode levar a um novo desenvolvimento de inibidores da α-glicosidase neste estudo. Conclusões: A cirurgia perturba o equilíbrio fisiológico do corpo humano e causa grande estresse, além de alterar as funções hormonais, metabólicas, imunológicas e nervosas. O uso deste fármaco (G5) durante a recuperação pós-cirúrgica (ERAS) é um processo de cuidado multifuncional que preserva o estado fisiológico normal e reduz as complicações cirúrgicas.
Referencias
1. K. Brown, A. Weymouth-Wilson & B. Linclau. A linear synthesis of gemcitabine. Carbohydrate Research, 406, 71–75 (2015). https://doi.org/10.1016/j.carres.2015.01.001
2. K.K.Y. Cham, J.H. Baker, K.S. Takhar, J.A. Flexman, M.Q. Wong, D.A. Owen, et al. Metronomic gemcitabine suppresses tumour growth, improves perfusion, and reduces hypoxia in human pancreatic ductal adenocarcinoma. British Journal of Cancer, 103, 52–60 (2010). https://doi.org/10.1038/sj.bjc.6605727
3. G. Bocci, R. Danesi, G. Marangoni, A. Fioravanti, U. Boggi, I. Esposito, et al. Antiangiogenic versus cytotoxic therapeutic approaches to human pancreas cancer: an experimental study with a vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor and gemcitabine. European Journal of Pharmacology, 498(1-3), 9–18 (2004). https://doi.org/10.1016/j.ejphar.2004.07.062
4. S.A. Veltkamp, J.H. Beijnen & J.H.M. Schellens. Prolonged versus standard gemcitabine infusion: translation of molecular pharmacology to new treatment strategy. The Oncologist, 13(3), 261–276 (2008). https://doi.org/10.1634/theoncologist.2007-0215
5. L.J. Scott & C.M. Spencer. Miglitol: a review of its therapeutics potential in type 2 diabetes mellitus. Drugs, 59(3), 521–549 (2000). https://doi.org/10.2165/00003495-200059030-00012
6. B. Mayur, S. Sandesh, S. Shruti & S. Sung-Yum. Antioxidant and α-glucosidase inhibitory properties of Carpesium abrotanoides. Journal of Medicinal Plants Research, 4(15), 1547–1553 (2010). URL: https://academicjournals.org/article/article 1380703440_ Mayur %20et%20al%20PDF.pdf
7. M. Das, R. Jaine, A.K. Agrawal, K. Thanki & S. Jain. Macromolecular bipill of gemcitabine and methotrexate facilitates tumor-specific dual drug therapy with higher benefit-to-risk ratio. Bioconjugate Chemistry, 25(3), 501–509 (2014). https://doi.org/10.1021/bc400477q
8. K. Brown, A. Weymouth-Wilson & B. Linclau. A linear synthesis of gemcitabine. Carbohydrate Research, 406, 71–75 (2015). https://doi.org/10.1016/j.carres.2015.01.001
9. S. Yang, D. Luo, N. Li, C. Li, S. Tang & Z. Huang. New mechanism of gemcitabine and its phosphates: DNA polymerization disruption via 3′–5′ exonuclease inhibition. Biochemistry, 59(45), 4344–4352 (2020). https://doi.org/10.1021/acs.biochem.0c00543
10. A. El-Laghdach, M.I. Matheu, S. Castillón, C. Bliard, A. Olesker & G. Lukacs. A new and extremely fast synthesis of 2-deoxy-2,2-difluoro-d-arabino-hexose (2-deoxy-2,2-difluoro-d-glucose). Carbohydrate Research, 233, C1–C3 (1992). https://doi.org/10.1016/S0008-6215(00)90944-3
11. A. Rouf, M.A. Aga, B.Kumar, S.Taneja, (R)-2,3-Cyclohexylideneglyceraldehyde, a Chiral Pool Synthon for the Synthesis of 2-Azido-1,3-diols, Helvetica Chimica Acta, 98(6) (2015). DOI:10.1002/hlca.201400344
12. J.A. Weigel. A new method for the synthesis of α,α-difluoro-β-hydroxy esters through the enolization of s-tert-butyl difluoroethanethioate. The Journal of Organic Chemistry, 62(18), 6108–6109 (1997). https://doi.org/10.1021/jo9711596
13. Y. Matsumura, H. Fujii, T. Nakayama, Y. Morizawa & A.J. Yasuda. Titanium-promoted highly stereoselective synthesis of α,α-difluoro-β,γ-dihydroxyester. Simple route to 2-deoxy-2,2-difluororibose. Journal of Fluorine Chemistry, 57(1-3), 203–207 (1992). https://doi.org/10.1016/s0022-1139(00)82832-8
14. M. Monajjemi, M.H. Razavian, F. Mollaamin, F. Naderi & B. Honarparvar. A theoretical thermochemical study of solute-solvent dielectric effects in the displacement of codon-anticodon base pairs. Russian Journal of Physical Chemistry A, 82(13), 2277–2285 (2008). https://doi.org/10.1134/s0036024408130207
15. F. Mollaamin, S. Shahriari & M. Monajjemi. Therapeutic role of medicinal plants against viral diseases focusing on COVID-19: Application of computational chemistry towards drug design. Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(1), 19–43 (2024). https://doi.org/10.15446/rcciquifa.v53n1.112978
16. F. Mollaamin & M. Monajjemi. Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease. Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(2), 430–454 (2024). https://doi.org/10.15446/rcciquifa.v53n2.114450
17. M. Monajjemi, H. Aghaie & F. Naderi. Thermodynamic study of interaction of TSPP, CoTsPc, and FeTsPc with calf thymus DNA. Biochemistry Moscow, 72(6), 652–657 (2007). https://doi.org/10.1134/s0006297907060089
18. F. Mollaamin & M. Monajjemi. Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Molecular Simulation, 49(4), 365–376 (2023). https://doi.org/10.1080/08927022.2022.2159996
19. F. Mollaamin & M. Monajjemi. Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: a molecular modeling framework by DFT perspective. Journal of Molecular Modeling, 29(4), 119 (2023). https://doi.org/10.1007/s00894-023-05526-3
20. M. Monajjemi, F. Naderi, F. Mollaamin & M. Khaleghian. Drug design outlook by calculation of second virial coefficient as a nano study. Journal of the Mexican Chemical Society, 56(2), 207–211 (2012). https://doi.org/10.29356/jmcs.v56i2.323
21. M. Monajjem, N. Karachi & F. Mollaamin. The investigation of sequence-dependent interaction of messenger RNA binding to carbon nanotube. Fullerenes, Nanotubes and Carbon Nanostructures, 22(7), 643–662 (2014). https://doi.org/10.1080/1536383x.2012.717557
22. M. Monajjemi. Quantum investigation of non-bonded interaction between the B15N15 ring, and BH2NBH2 (radical, cation, anion) systems: A nano molecularmotor. Structural Chemistry, 23(2), 551–580 (2012). https://doi.org/10.1007/s11224-011-9895-8
23. M. Monajjemi & J.E. Boggs. A new generation of BnNn rings as a supplement to boron nitride tubes and cages. Journal of Physical Chemistry A, 117(7), 1670–1684 (2013). https://doi.org/10.1021/jp312073q
24. I. Zehbe, E. Wilander, H. Delius & M. Tommasino. Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype. Cancer Research, 58(4), 829–833 (1998). URL: https://pubmed.ncbi.nlm.nih.gov/9485042/
25. L.F.Xi, G.W. Demers, L.A. Koutsky, N.B. Kiviat, J. Kuypers, D.H. Watts, K.K. Holmes & D.A. Galloway. Analysis of human papillomavirus type 16 variants indicates establishment of persistent infection. The Journal of Infectious Diseases, 172(3), 747–755 (1995). https://doi.org/10.1093/infdis/172.3.747
26. F. Mollaamin, J. Najafpour, S. Ghadami, A.R. Ilkhani, M. Akrami & M. Monajjemi. The electromagnetic feature of B15N15Hx (x = 0, 4, 8, 12, 16, and 20) nano, rings: Quantum theory of atoms in molecules/NMR approach. Journal of Computational and Theoretical Nanoscience, 11(5), 1290–1298 (2014). https://doi.org/10.1166/jctn.2014.3495
27. M. Monajjemi & F. Mollaamin. Intermolecular simulation of nanobiological structures in point of potential energy and second virial coefficient. Journal of Computational and Theoretical Nanoscience, 9(12), 2208–2214 (2012). https://doi.org/10.1166/jctn.2012.2640
28. F. Mollaamin & M. Monajjemi. Electric and magnetic evaluation of aluminum–magnesium nanoalloy decorated with germanium through heterocyclic carbenes adsorption: A density functional theory study. Russian Journal of Physical Chemistry B, 17(3), 658–672 (2003). https://doi.org/10.1134/s1990793123030223
29. M. Monajjemi, S. Ketabi, M.H. Zadeh & A. Amiri. Simulation of DNA bases in water: Comparison of the Monte Carlo algorithm with molecular mechanics force fields. Biochemistry Moscow, 71(Suppl. 1), S1–S8 (2006). https://doi.org/10.1134/s0006297906130013
30. F. Mollaamin & M. Monajjemi. Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method. Sensor Review, 43(4), 266–279 (2023). https://doi.org/10.1108/SR-03-2023-0040
31. M. Monajjemi, B. Honarparvar, S.M. Nasseri & M. Khaleghian. NQR and NMR study of hydrogen bonding interactions in anhydrous and monohydrated guanine cluster model: A computational study. Journal of Structural Chemistry, 50(1), 67–77 (2009). https://doi.org/10.1007/s10947-009-0009-z
32. B. Khalili-Hadad, F. Mollaamin & M. Monajjemi. Biophysical chemistry of macrocycles for drug delivery: A theoretical study. Russian Chemical Bulletin, 60(2), 238–241 (2011). https://doi.org/10.1007/s11172-011-0039-5
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2026 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13




