Thermodynamic analysis of celecoxib in amphiprotic and amphiprotic-aprotic solvent mixtures at several temperatures
Análisis termodinámico del celecoxib en mezclas disolventes anfipróticas y anfipróticas-apróticas a varias temperaturas
DOI:
https://doi.org/10.15446/rcciquifa.v48n3.84957Palabras clave:
celecoxib, solubility, solvent mixtures, thermodynamic quantities, characterization (en)celecoxib, solubilidad, mezcla disolvente, parámetros termodinámicos, caracterización (es)
Descargas
The solubilities of celecoxib (CLX), a COX-2 selective nonsteroidal anti-inflammatory drug, were determined in water-ethanol and ethanol-ethyl acetate mixtures at several temperatures (288.15-308.15 K). The solubility curves as a function of ethanol ratio were studied at five temperatures, they showed a single maximum located at 50% ethanol-ethyl acetate (δ1 = 22.50 MPa1/2). The measurements of the variation of inherent drug solubility with temperature were used to estimate different thermodynamic parameters, enthalpy, entropy and Gibbs free energy of solution (ΔHS,ΔSS and ΔGShm, respectively). The apparent enthalpies of the solution were a nonlinear function of the ethanol ratio in aqueous mixture. Non-linear enthalpy-entropy compensation analysis was observed indicating different dissolution mechanism with the variation in mixtures composition. The solubility enhancement is entropy driven at water-rich region (0-40% v/v ethanol) and enthalpy controlled at ethanol-rich region (40–100% v/v ethanol), likely due to water-structure loss around nonpolar moieties of the drug and for the ethanol-rich mixtures it is the enthalpy, probably due to the drug better solvation.
Se determinó la solubilidad del celecoxib (CLX), un fármaco antiinflamatorio no esteroide selectivo de COX-2, en agua-etanol y etanol-acetato de etilo a varias temperaturas (288,15-308,15 K). Los perfiles de solubilidad obtenidos fueron estudiados en función de la proporción de etanol en las cinco temperaturas de estudio. Los resultados muestran solamente un máximo en el 50% de etanol-acetato de etilo (δ1 = 22,50 MPa1/2). La variación de la solubilidad con la temperatura se utilizó para calcular diferentes parámetros termodinámicos, entalpía, entropía y energía de disolución libre de Gibbs (ΔHS, ΔSS y ΔGShm, respectivamente). Las entalpías aparentes de disolución fueron no lineales en la mezcla acuosa. Además, se observó un análisis de compensación de entalpía-entropía no lineal, lo que indica un mecanismo de disolución que varía con la composición de cada mezcla. El aumento de la solubilidad es impulsado por la entropía en la región rica en agua (0-40% v/v de etanol) y la entalpía en la región rica en etanol (40–100% v/v de etanol), probablemente debido a la pérdida de la estructura del agua alrededor de los residuos no polares del fármaco y para las mezclas ricas en etanol es la entalpía, probablemente debido a la mejor solvatación del fármaco.
Referencias
P. Patrignani, C. Patrono, Cyclooxygenase inhibitors: From pharmacology to clinical read-outs, Biochim. Biophys. Acta., 1851, 422-432 (2015).
H. Xu, F. Shen, Q.Z. Lv, Celecoxib enhanced the cytotoxic effect of cisplatin in chemo-resistant gastric cancer xenograft mouse models through a cyclooxygenase-2-dependent manner, Eur. J. Pharmacol., 776, 1-8 (2016).
S. TacconellI, A. Bruno, R. Grande et al., Nonsteroidal anti-inflammatory drugs and cardiovascular safety - translating pharmacological data into clinical readouts, Expert Opin. Drug Saf., 16, 791-807 (2017).
P. Bustamante, B. Escalera, A. Martin et al., Predicting the Solubility of Sulfamethoxypyridazine in Individual Solvents I: Calculating Partial Solubility Parameters, J. Pharm. Sci., 78, 567-573 (1989).
M.A. Peña, P. Bustamante, A. Reíllo, Nuevos métodos basados en el parámetro de solubilidad de Hildebrand y los parámetros de solubilidad parciales aplicables a formulación de medicamentos, Tesis doctoral, Universidad de Alcalá, Alcalá de Henares, España, 2001.
P.J. Sinko, Y. Singh, Martin's physical pharmacy and pharmaceutical sciences, 6th edition, Lippincot Willian and Wilkins, New York, 2013.
R. Martínez, Tratado de tecnología farmacéutica, Vol. I Sistemas farmacéuticos, Síntesis, Madrid, 2016.
G. Chawla, P. Gupta, R. Thilagavathi et al., Characterization of solid-state forms of celecoxib, Eur. J. Pharm. Sci., 20, 305-317 (2003).
G. Chawla, A.K. Bansal, Effect of processing on celecoxib and its solvates, Pharm. Dev. Technol., 9, 419-433 (2004).
J.E. Frampton, G.M. Keating, Celecoxib: a review of its use in the management of arthritis and acute pain, Drugs, 67, 2433-2472 (2007).
X. Wang, Q. Zhang, L. Jiang et al., Isostructurality in six celecoxib co-crystals introduced by a solvent inclusion, Crystengcomm, 16, 10959-10968 (2014).
Mettler-Toledo, Calorimetría diferencial de barrido (DSC) (2012), URL: https://www.mt.com/es/es/home/library/on-demand-webinars/lab-analytical-instruments/DSC_TA.html, accessed June 17, 2017.
L.J. Ferro, P.J. Miyake, Polymorphic crystalline forms of celecoxib US Patent 7, 476-744 (2009).
P. Gupta, V.K. Kakumanu, A.K. Bansal, Stability and solubility of celecoxib-PVP amorphous dispersions: a molecular perspective, Pharm. Res., 21, 1762-1769 (2004).
P. Gupta, R. Thilagavathi, A.K. Chakraborti et al., Role of molecular interaction in stability of celecoxib−PVP amorphous systems, Mol. Pharm., 2, 384-391 (2005).
G.W. Lu, M. Hawley, M. Smith et al., Characterization of a novel polymorphic form of celecoxib, J. Pharm. Sci., 95, 305-317 (2006).
K. Grzybowska, M. Paluch, A. Grzybowski et al., Molecular dynamics and physical stability of amorphous anti-inflammatory drug: Celecoxib, J. Phys. Chem. B., 114, 12792-12801 (2010).
P. Bustamante, S. Muela, B. Escalera et al., Solubility behavior and prediction for antihelmintics at several temperatures in aqueous and nonaqueous mixtures, Chem. Pharm. Bull., 58, 644-649 (2010).
M. Abbas, J. Vaez-Gharamaleki, R. Fazeli-Bakhtiyari et al., Prediction of deferiprone solubility in some non-aqueous binary solvent mixtures at various temperatures, J. Mol. Liq., 203, 16-19 (2015).
M.A. Peña, A. Reíllo, B. Escalera et al., Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures, Int. J. Pharm., 321 155-161 (2006).
R.A. Fedors, A method for estimating both the solubility parameters and molar volumes of liquids, Polym. Eng. Sci., 14, 147-154 (1974).
R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976).
C. Bustamante, P. Bustamante, Nonlinear enthalpy-entropy compensation for the solubility of phenacetin in dioxane-water solvent mixtures, J. Pharm. Sci., 85, 1109-1111 (1996).
P. Bustamante, S. Romero, M.A. Peña et al., Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane–water, J. Pharm. Sci., 87, 1590-1596 (1998).
P. Bustamante, J. Navarro, S. Romero et al., Thermodynamic origin of the solubility profile of drugs showing one or two maxima against the polarity of aqueous and nonaqueous mixtures: niflumic acid and caffeine, J. Pharm. Sci. 91, 874-883 (2002).
M.A. Peña, B. Escalera, A. Reíllo et al., Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid, J. Pharm. Sci., 98, 1129-1135 (2009).
F. Martínez, P. Bustamante, M.A. Peña, Thermodynamic analysis and enthalpy–entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures, Fluid Phase Equilib., 308, 98-107 (2011).
F. Martínez, A. Jouyban, W.E. Acree, Jr., Further numerical analysis on the solubility of ibrutinib in ethanol + water mixtures at different temperatures, J. Mol. Liq., 218, 35-38 (2016).
K. Moodley, J. Rarey, D. Ramjugernath, Experimental solubility for betulin and estrone in various solvents within the temperature range T = (293.2 to 328.2) K, J. Chem. Thermodyn., 98, 42-50 (2016).
G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko et al., Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure, Int. J. Pharm., 349 300-312 (2008).
M. Meloun, Z. Ferencíková, Enthalpy-entropy compensation for some drugs dissociation in aqueous solutions, Fluid Phase Equilib., 328, 31-41 (2012).
D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol+ water mixtures, J. Solution Chem., 44, 360-377 (2015).
D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado et al., Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015).
J. Pérez-Benito, M. Mulero-Raichs, Enthalpy-entropy compensation effect in chemical kinetics and experimental errors: a numerical simulation approach, J. Phys. Chem. A., 120, 7598-7609 (2016).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Vivek Verma, Rodrigo Soto, Shayon Bhattacharya, Damien Thompson, Kevin M. Ryan, Luis Padrela. (2022). Thermodynamic solubility of celecoxib in organic solvents. CrystEngComm, 24(3), p.698. https://doi.org/10.1039/D1CE01415C.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13