Síntesis, caracterización y evaluación farmacológica de nuevos complejos metálicos derivados de híbridos heteroaromáticos (benzimidazol/oxadiazol)
Synthesis, characterization and pharmacological evaluation of new metal complexes derived from heteroaromatic hybrids (benzimidazole/oxadiazole)
DOI:
https://doi.org/10.15446/rcciquifa.v48n3.84959Palabras clave:
actividad biológica, complejos lantánidos, actividad antioxidante, actividad antibacteriana (es)iological activity, lanthanide complexes, antioxidant activity, antibacterial activity (en)
Descargas
This paper reports the synthesis and detailed characterization of lanthanide complexes La(III), Ce(III), Nd(III) y Sm(III) with tridentate ligands derived from heteroaromatic hybrids. The ligands and their metal complexes were characterized by different physicochemical techniques, including elemental and thermogravimetric analysis; UV-Vis, IR, 1H-NMR and 13C-NMR spectroscopy; molar conductance measurements; and mass spectrometry. The spectral data showed that the hybrid ligand behaves as a NOO tridentate ligand through the nitrogen and oxygen atoms of the benzimidazole and oxadiazole rings and the oxygen atom of the carbonyl group. Elemental and thermal analyses indicated that the obtained metal complexes were formed in 1:2 stoichiometry (metal-ligand). The antioxidant capacity of these compounds was evaluated by both DPPH assay and electrochemical measurements (cyclic voltammetry and square wave voltammetry). The results showed that the metal complexes have higher antioxidant activity compare to the free ligands. Finally, the antibacterial activities of the ligands and their complexes were determined by in vitro tests against Gram-positive bacterial strains and Gram-negative bacterial strains using the broth microdilution method. The metal complexes showed greater antimicrobial activities than the precursor ligands against some of the microorganisms.
Referencias
C. Viegas-Junior, E.J. Barreiro, A. Manssour-Fraga, Molecular hybridization: A useful tool in the design of new drug prototypes, Curr. Med. Chem., 14, 1829-1852 (2007).
C. Lazar, A. Kluczyk, T. Kiyota, Y. Konishi, Drug evolution concept in drug design: 1. Hybridization method, J. Med. Chem., 47, 6973-6982 (2004).
D. Dolles, M. Nimczick, M. Scheiner et al., Aminobenzimidazoles and structural isomers as templates for dual-acting butyrylcholinesterase inhibitors and hCB2R ligands to combat neurodegenerative disorders, ChemMedChem, 11, 1270-1283 (2016).
Y.Q. Hu, C. Gao, S. Zhang et al., Quinoline hybrids and their antiplasmodial and antimalarial activities, Eur. J. Med. Chem., 139, 22-47 (2017).
H. Bektas, C. Albay, B.B. Sokmen et al., Synthesis, antioxidant, and antibacterial activities of some new 2-(3-fluorobenzyl)-1H-benzimidazole derivatives, J. Heterocycl. Chem., 55, 2400-2407 (2018).
K.K. Gnanasekaran, B. Nammalwar, M. Murie, R.A. Bunce, Efficient synthesis of 1,3,4-oxadiazoles promoted by NH4Cl, Tetrahedron Lett., 55, 6776-6778 (2014).
M. Madhu-Sekhar, U. Nagarjuna, V. Padmavathi, A. Padmaja, N.V. Reddy, T. Vijaya, Synthesis and antimicrobial activity of pyrimidinyl 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles, Eur. J. Med. Chem., 145, 1-10 (2018).
Y. Win, M. Heng, E. Yousif, N. Shalan, Lanthanide complexes of {(5-phenyl-1,3,4-oxadiazol-2-yl)thio}acetic acid: Synthesis, characterization and preliminary in vitro antibacterial screening activity, Int. J. Phys. Sci., 7, 43-47 (2012).
J.D. Londoño-Mosquera, A. Aragón-Muriel, D. Polo-Cerón, Synthesis, antibacterial activity and DNA interactions of lanthanide(III) complexes of N(4)-substituted thiosemicarbazones, Univ. Sci., 23, 141-169 (2018).
A. Husain, M. Rashid, R. Mishra, S. Parveen, D. S. Shin, D. Kumar, Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: Design and synthesis as anticancer agents, Bioorganic Med. Chem. Lett., 22, 5438-5444 (2012).
S. Sdiri, P. Navarro, A. Monterde, J. Benabda, A. Salvador, Effect of postharvest degreening followed by a cold-quarantine treatment on vitamin C, phenolic compounds and antioxidant activity of early-season citrus fruit, Postharvest Biol. Technol., 65, 13-21 (2012).
CLSI, “Clinical and Laboratory Standards Institute: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically,” in Clinical and laboratory standards institute, CLSI, Pennsylvania, 2012, 1.
M.P. Alexandra, CCCXVII.-The Formation of 2-Subtituted Benzimidazole, J. Chem. Soc., 2393-2399 (1928).
A. Ur-Rehman, K. Nafeesa, 1,3,4-OXADIAZOLE: Synthesis of Derivatives with Antioxidant & Enzyme Inhibition Activities, Pharmamedix Indian, Rajasthan, 2014, 18.
R.V. Patel, P.K. Patel, P. Kumari, D.P. Rajani, K.H. Chikhalia, Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents, Eur. J. Med. Chem., 53, 41-51 (2012).
W.J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coord. Chem. Rev., 7, 81-122 (1971).
S.C. Dmphen, Preparation, photoluminescent behaviour, antimicrobial and antioxidant properties of new orange light emitting Sm ( III ), 4, 869-876 (2018).
A. Husain, M. Rashid, M. Shaharyar, A.A. Siddiqui, R. Mishra, Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: New anticancer agents, Eur. J. Med. Chem., 62, 785-798 (2013).
V. M. Patel, N. B. Patel, M. J. Chan-Bacab, G. Rivera, Synthesis, biological evaluation and molecular dynamics studies of 1,2,4-triazole clubbed Mannich bases, Comput. Biol. Chem., 76, 264-274 (2018).
A. Aragón-Muriel, D. Polo-Cerón, Synthesis, characterization, thermal behavior, and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate, J. Rare Earths, 31, 1106-1113 (2013).
A. Aragón-Muriel, Y. Upegui, J.A. Muñoz, S.M. Robledo, D. Polo-Cerón, Synthesis, characterization and biological evaluation of rare earth complexes against tropical diseases leishmaniasis, malaria and trypanosomiasis, Avanc. Quim, 11, 53-61 (2016).
G. Tirzitis, G. Bartosz, Determination of antiradical and antioxidant activity: basic principles and new insights- Review, Acta Biochim. Pol., 54, 139-142 (2010).
Z.A. Taha, A.M. Ajlouni, W. Al Momani, A.A. Al-Ghzawi, Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc., 81, 570-577 (2011).
N. Mihailović, V. Marković, I.Z. Matić et al., Synthesis and antioxidant activity of 1,3,4-oxadiazoles and their diacylhydrazine precursors derived from phenolic acids, RSC Adv., 7, 8550-8560 (2017).
M.N. Gueye, M. Dieng, I.E. Thiam et al., Lanthanide ( III ) complexes with tridentate Schiff base ligand, antioxidant activity and X-ray crystal structures of the Nd ( III ) and Sm ( III ) complexes, J. Sabinet African, 70, 8-15 (2017).
M. Miceli, E. Roma, P. Rosa et al., Synthesis of Benzofuran-2-one derivatives and evaluation of their antioxidant capacity by comparing DPPH assay and cyclic voltammetry, Molecules, 23, E710 (2018).
J.F. Arteaga, M. Ruiz-Montoya, A. Palma, G. Alonso-Garrido, S. Pintado, J.M. Rodríguez-Mellad, Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles, Molecules, 17, 5126-5138 (2012).
J. Sochor, J. Dobes, O. Krystofova et al., Electrochemistry as a tool for studying antioxidant properties, Int. J. Electrochem. Sci., 8, 8464-8489 (2013).
J.C. Helfrick, L.A. Bottomley, Cyclic square wave voltammetry of single and consecutive reversible electron transfer reactions, Anal. Chem., 81, 9041-9047 (2009).
R. Apak, M. Özyürek, K. Güçlü, E. Çapanoʇlu, Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays, J. Agric. Food Chem., 64, 997-1027 (2016).
R. Prabhakaran, S.V. Renukadevi, R. Karvembu et al., Structural and biological studies of mononuclear palladium(II) complexes containing N-substituted thiosemicarbazones, Eur. J. Med. Chem., 43, 268-273 (2008).
B.G. Tweedy, Plant extracts with metal ions as potential antimicrobial agents, Phytopathology, 55, 910-918 (1964).
D. Song, S. Ma, Recent development of benzimidazole-containing antibacterial agents, Chem. Med. Chem., 11, 646-659, (2016).
S. Hameed, A. Raichurkar, P. Madhavapeddi et al., Benzimidazoles: Novel mycobacterial gyrase inhibitors from scaffold morphing, ACS Med. Chem. Lett., 5, 820-825 (2014).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2020 Revista Colombiana de Ciencias Químico-Farmacéuticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13