Publicado

2019-09-01

Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures

Comportamiento volumétrico del bromuro de tetra-n-butilamonio en varios solventes a diferentes temperaturas

DOI:

https://doi.org/10.15446/rcciquifa.v48n3.84990

Palabras clave:

Tetra-n-butyl ammonium bromide, water, methanol, ethanol, 1-propanol, 1-butanol, acoustical and apparent parameters, Molecular interactions (en)
bromuro de tetra-n-butilamonio, agua, metanol etanol, 1-propanol, 1-butanol, parámetros acústicos y aparentes, interacciones moleculares (es)

Autores/as

  • Shipra Baluja Department of Chemistry, Saurashtra University, Rajkot-360005 (Gujarat)
  • Elham Abdullah Mo Alnayab Department of Chemistry, Saurashtra University, Rajkot-360005 (Gujarat)

Measurement of ultrasonic velocity, density and viscosity of solutions of Tetra Butyl Ammonium Bromide have been carried outin different solvents (water, methanol, ethanol, 1-propanol and 1-butanol) as functions of concentration (1 to 0.1 M) at different temperatures (298.15 K to 318.15 K). Using these experimental data, various acoustical and apparent parameters such as acoustical impedance, intermolecular free length, adiabatic compressibility, molar compressibility, Van der Waals constant, relaxation strength, apparent molar isentropic compressibility, apparent molar volume have been evaluated. Further, some thermodynamic parameters such as Gibbs free energy of activation, enthalpy and entropy of activation have been evaluated. All these parameters have been evaluated to understand type of interactions present in studied solutions.

La medición de la velocidad ultrasónica, la densidad y la viscosidad de algunas soluciones de bromuro de tetra-n-butilamonio se llevó a cabo en diferentes solventes (agua, metanol, etanol, 1-propanol y 1-butanol) en función de la concentración (1 a 0,1 M) y a diferentes temperaturas (298,15 K a 318.15 K). Utilizando estos datos experimentales, se evaluaron varios parámetros acústicos y aparentes, como la impedancia acústica, la longitud libre intermolecular, la compresibilidad adiabática, la compresibilidad molar, la constante de Van der Waals, la fuerza de relajación, la compresibilidad isentrópica molar aparente, el volumen molar aparente, etc. Además, se evaluaron algunos parámetros termodinámicos, como la energía de activación libre de Gibbs, la entalpía y la entropía de activación. Todos estos parámetros han sido evaluados para comprender el tipo de interacciones presentes en las soluciones estudiadas.

Referencias

Z. Wei, X. Wei, Xiuhong, Z. Wang, J. Liu, Ionic liquid crystals of quaternary ammonium salts with a 2-hydroxypropoxy insertion group, J. Mater. Chem., 21, 6875-6882 (2011).

J.I. Kadokawa, Ionic Liquids-New Aspects for the Future, InTech, 2013.

A. Stojanovic, C. Morgenbesser, D. Kogelnig, R. Krachler, B.K. Keppler, Ionic Liquids: Theory, Properties, New Approaches, A. Kokorin (Ed.), Intech Open, 2011.

R.T. Carson, E. Larson, S.B. Levy, B.M. Marshall, A.E. Aiello, Use of antibacterial consumer products containing quaternary ammonium compounds and drug resistance in the community, J. Antimicrob. Chemother., 62, 1160-1162 (2008).

H. Kleszczyńska, S. Matyjasik, J. Sarapuk, D. Grobelny, S. Witek, Interaction of some quaternary ammonium salts with red cells and planar lipid membranes, Studia Biophys., 84, 173-178 (1981).

B. Dmochowska, K. Sikora, A. Woziwodzka, J. Piosik, B. Podgórska, Mutagenic activity of quaternary ammonium salt derivatives of carbohydrates, Beilstein J. Org. Chem., 12, 1434-1439 (2016).

S.P.V. Vladimi, E. Yanenko, I. Krossing, R. Kalb, Thermochemistry of ammonium based ionic liquids: Tetra-alkyl ammonium nitrates. Experiments and computations, J. Chem. Thermodyn., 51, 107-113 (2012).

E.R. Nightingale Jr., Viscosity of aqueous solutions. III. Tetramethylammonium bromide and the role of the tetraalkylammonium ions, J. Phys. Chem., 66, 894-897 (1962).

S. Lindenbaum, G.E. Boyd, Osmotic and activity coefficients for the symmetrical tetraalkylammonium halides in aqueous solution at 25°C, J. Phys. Chem., 68, 911-917 (1964).

B.J. Levien, Some physical properties of aqueous solutions of tetramethylammonium bromide and tetramethylammonium iodide, Aust. J. Chem., 18, 1161-1170 (1965).

H.S. Frank, W.Y. Wen, Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure, Disc. Faraday Soc., 24, 133-140 (1957).

H. Ruterjans, F. Schreiner, U. Sage, T. Ackermann, Apparent molal heat capacities of aqueous solutions of alkali halides and alkylammonium salts, J. Phys. Chem., 73, 986-994 (1969).

A.K. Covington, T. Dickinson, Physical chemistry of organic solvent systems, Plenum, New York, 1973.

H. Hooshyar, B. Khezri, Volumetric properties of tetra-n-butyl ammonium bromide in aqueous solutions of magnesium sulphate in the temperature range 298.15 to 318.15K and under the atmospheric pressure, Phys. Chem. Liq., 54, 663-679 (2016).

Z.B. Zhou, H. Matsumoto, K. Tatsumi, Low‐melting, low‐viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyl trifluoroborates, Chem., Eur. J., 11, 752-766 (2005).

J. Sun, M. Forsyth, D.R. MacFarlane, Room-temperature molten salts based on the quaternary ammonium ion, J. Phys. Chem. B, 102, 8858-8864 (1998).

D.Z. Xu, Y. Liu, S. Shi, Y. Wang, Chiral quaternary alkylammonium ionic liquid [Pro-dabco] [BF4]: as a recyclable and highly efficient organocatalyst for asymmetric Michael addition reactions, Tetrahedron: Asymmetry, 21, 2530-2534 (2010).

S. Han, J. Li, S. Zhu, R. Chen, Y. Wu, X. Zhang, Z. Yu, Potential application of ionic liquid in wood related industries, BioResources, 4, 825-834 (2009).

C.P. Gerba, Quaternary ammonium biocides: efficacy in application, Appl. Environ. Microbiol., 81, 464-469 (2015).

D. Zhao, M. Wu, Y. Kou, E. Min, Ionic liquids: applications in catalysis, Catalysis Today, 74, 157-189 (2002).

G. Cheng, Z. Zhang, S. Chen, J.D. Bryers, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials, 28, 4192-4199 (2007).

B.C. Ranu, A. Das, S. Samanta, Catalysis by an ionic liquid: efficient conjugate addition of thiols to electron deficient alkenes catalyzed by molten tetrabutylammonium bromide under solvent-free conditions, Tetrahedron, 59, 2417-2421 (2003).

S. Mallakpour, A. Zadehnazari, Synthesis and characterization of novel heat stable and processable optically active poly(amide–imide) nanostructures bearing hydroxyl pendant group in an ionic green medium, J. Polym. Environ., 21, 132-140 (2013).

B. Guo, E. Duan, A. Ren, Y. Wang, H. Liu, Solubility of SO2 in caprolactam tetrabutyl ammonium bromide ionic liquids, J. Chem. Eng. Data, 55, 1398-1401 (2010).

T. Floris, P. Kluson, L. Bartek, H. Pelantova, Quaternary ammonium salts ionic liquids for immobilization of chiral Ru-BINAP complexes in asymmetric hydrogenation of β-ketoesters, Appl. Catalysis, 366, 160-165 (2009).

K. Kim, C. Lang, R. Moulton, P.A. Kohl, Electrochemical investigation of quaternary ammonium/aluminum chloride ionic liquids, J. Electrochem. Soc., 151, A1168-A1172 (2004).

M.I. Levinson, Rinse-added fabric softener technology at the close of the twentieth century, J. Surfactants Deterg., 2, 223-235(1999).

S. Sowmiah, V. Srinivasadesikan, M.C. Tseng, Y.H. Chu, On the chemical stabilities of ionic liquids, Molecules, 14, 3780-3813 (2009).

J.M. Khurana, S. Kumar, Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions, Tetrahedron Lett., 50, 4125-4127 (2009).

L.W. Xu, J.W. Li, S.L. Zhou, C.G. Xia, A green, ionic liquid and quaternary ammonium salt-catalyzed aza-Michael reaction of α,β-ethylenic compounds with amines in water, New J. Chem., 28, 183-184 (2004).

A.U. Mandakmare, M.L. Narwade, D.T. Tayade, A.B. Naik, Intermolecular interactions in dioxane-water solutions of substituted coumarins according to ultrasonic data, Russ. J. Phys. Chem., 88, 2334-2338 (2014).

O. Mokate, W.A.A. Ddamba, Volumetric properties of (difurylmethane+alkan-1-ol) binary mixtures at 298.15 K, J. Soln. Chem., 35, 1493-1503 (2006).

S. Canzonieri, A. Camacho, R. Tabarsrozzi, M. Postigo, L. Mussari, Volumetric and viscous behaviour of the binary and ternary systems formed by methyl acetate, ethyl acetate and 1-propanol at 283.15, 298.15 and 313.15 K, Phys. Chem. Liq., 50, 530-545 (2012).

B. Goddu, M.M. Tadavarthi, V.K. Tadekoru, J.N. Guntupalli, Density, speed of sound, and dynamic viscosity of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/1-butyl-3-methylimidazolium hexafluorophosphate and N-methylaniline binary systems from T = 298.15 to 323.15 K at 0.1 MPa, J. Chem. Eng. Data, 64, 2303-2319(2019).

D.S. Gill, D.S. Rana, S.P. Jauhar, Compressibility studies of some copper(I), silver(I), and tetrabutylammonium salts in acetonitrile + adiponitrile binary mixtures, J. Chem. Eng. Data, 55, 2066-2071 (2010).

F. Hirata, K. Arakawa, Ultrasonic study of solute-solvent interaction in aqueous solutions of tetraalkylammonium salts, Bull. Chem. Soc. Jpn, 45, 2715-2719 (1972).

J.A. Riddick, W.B. Bunger, T. Sakano, Organic Solvents: Physical Properties and methods of purification, 4thEd., Techniques of Chemistry, II, A Wiley-Interscience Publication, John Wiley, New York, 1986.

S. Baluja, R.M. Talaviya, Density, sound speed, and viscosity of dihydropyridine derivatives in dimethyl sulfoxide at different temperatures, J. Chem. Eng. Data, 61, 1431-1440 (2016).

B. Hemalatha, P. Vasantharani, N. Senthikumar, Solute-solvent interactions of TBAB in DMF-water system at different temperatures, Int. J. Adv. Eng. Tech., 6, 795-803 (2013).

A. Toumi, N.E. Hammami, M. Bouanz, Acoustic and thermodynamic study of binary mixture cyclohexane-methanol using ultrasonic interferometer at different temperatures, Ind. J. Pure Appl. Phys., 56, 461-467 (2018).

S.S. Kulkarni, U.V. Khadke, Effect of solvents on the ultrasonic velocity and acoustic parameters of polyvinylidene fluoride solutions, Ind. J. Mat. Sci., 2016, ID 9582582 p. 1-6 (2016).

S.G. Rao, T.M. Mohan, T.V. Krishna, B.S. Rao, Volumetric properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 2-pyrrolidone from T = (298.15 to 323.15) K at atmospheric pressure, J. Chem. Thermodyn., 94, 127-137 (2016).

M.S. Raman, M. Kesavan, K. Senthilkumar, V. Ponnuswamy,Ultrasonic, DFT and FT-IR studies on hydrogen bonding interactions in aqueous solutions of diethylene glycol, J. Mol. Liq., 202, 115-124 (2015).

D.R. Godhani, P.B. Dobariya, A.M. Sanghani, A.A. Jogel, J.P. Mehta, Effect of temperature and solvents on thermo-physical properties of 1,3,4-oxadiazole derivative at atmospheric pressure, J. Mol. Liq., 180, 179-186 (2013).

S. Ravichandran, K. Ramanathan, Ultrasonic investigations of MnSO4, NiSO4 and CuSO4 aqueous in polyvinyl alcohol solution at 303K, Rasayan J. Chem., 3, 375-384 (2010).

D.R. Godhani, P.B. Dobariya, A.M. Sanghani, Effect of temperature and solvents on ultrasonic velocity and thermodynamic parameters of 1,3,4-oxadiazole derivative solutions, J. Mol. Liq., 168, 28-35 (2012).

V. Kannapn, R.J. Santhi, Ultrasonic study of induced dipole-dipole interactions in binary liquid mixtures, Ind. J. Pure Appl. Phys., 43, 750-754 (2005).

P. Sharma, S. Chauhan, M.S. Chauhan, V.K. Syal, Ultrasonic velocity and viscosity studies of tramacip and parvodex in binary mixtures of alcohol + water, Ind. J. Pure Appl. Phys., 46, 839-843 (2008).

S. Punitha, R. Uvarani, A. Panneerselvam, Acoustical and Spectroscopic studies in aqueous solutions of polymer and dextrin’s binary complex formation, Int. J. ChemTech Res., 7,629-638 (2014).

M. Kazafi, H.R. Ansari, Acoustical behavior of glucose. Sucrose and maltose in aqueous ammonium chloride solutions (0.5M) at different temperature, Res. Paper. Chem., 1, 1-4 (2011).

K.R. Devi, S. Geetha, Ultrasonic analysis of intermolecular interaction through internal pressure and free volume of aqueous fertilizer solutions, Int. J. ChemTech Res., 8, 519-526 (2015).

S. Punitha, R. Uvarani, A. Panneerselvam, S. Nithiyanantham, Physico-chemical studies on binary aqueous solutions of Anti-Viral Influenza drugs, Heliyon, 5, e01941 (2019).

B.B. Dhaduk, C. B. Patel, P. H. Parsania, Ultrasonic speed and related thermo-acoustical parameters of solutions of 1,1′-bis(3-methyl-4-ethoxyacetylphenoxy) cyclohexane at four different temperatures, J. Soln. Chem., 44,1976-1996 (2015).

P. S. Nikam, M. Hasan, T.B. Pawar, A.B. Sawant, Ultrasonic velocity and allied parameters of symmetrical tetraalkyl ammonium bromides in aqueous ethanol at 298.15 K, Ind. J. Pure Appl. Phys., 42,172-178 (2004).

M.R. Sanaria, P.H. Parsania, Studies on sound velocity and acoustical parameters of epoxy resins based on bisphenol-C, J. Pure Appl. Ultrason., 22, 54-59 (2000).

S. Khan, R. Sharma, A.K. Sharma, Acoustic studies and other acoustic parameters of Cu (II) soap derived from non-edible neem oil (AzadirectaIndica), in non-aqueous media at 298.15 K, Acta Acustica, 104, 277-283 (2018).

D.R. Bharja, Y.V. Patel, P.H. Parsania, Ultrasonic study of poly (R, R', 4, 4'-cyclohexylidene diphenylene phosphorochlorid-ate)-DMF solutions at different temperatures, J. Pure Appl. Ultrason., 24, 47-53 (2002).

J. Krakowiak, Apparent molar volumes and compressibilities of tetrabutyl-ammonium bromide in organic solvents, J. Chem. Thermodyn., 43,882-894 (2011).

R. Sadeghi, R. Golabiazar, M. Zlaii, Vapor-liquid equilibria, density, speed of sound, and refractive index of sodium tungstate in water and in aqueous solutions of poly(ethyleneglycol) 6000, J. Chem. Eng. Data, 55, 125-133 (2010).

D.O. Mason, XXVIII. Solute molecular volumes in relation to solvation and ionization, Philosoph. Mag., 8, 218-235 (1929).

R. Gopal, M.A. Siddiqi, Study of ion-solvent interaction of some tetraalkylammonium and common ions in N-methylacetamide from apparent molal volume data, J. Phys. Chem., 73, 3390-3394 (1969).

M.T.Z. Moattar, H. Shekaari, Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water, methanol, and ethanol at T = (298.15 to 318.15) K, J. Chem. Thermodyn., 37, 1029-1035 (2005).

R.L. Gardas, D.H. Dagade, J.A.P. Coutinho, K.J. Patil, Thermodynamic Studies of Ionic Interactions in Aqueous Solutions of Imidazolium-Based Ionic Liquids [Emim][Br] and [Bmim][Cl], J. Phys. Chem. B, 112, 3380-3389 (2008).

P.J. Victor, B. Das, D.K. Hazra, Ultrasonic velocities and isentropic compressibilities of electrolytes in 2-methoxyethanol from 15 to 35°C, J. Soln. Chem., 30, 435-442 (2001).

D. Das, B. Das, D.K. Hazra, Ultrasonic velocities and isentropic compressibilities of some symmetrical tetraalkylammonium salts in N,N-dimethylacetamide at 298.15 K, J. Mol. Liq., 111, 15-18 (2004).

J. Krakowiak, W. Grzybkowski, Apparent molar volume and compressibility of tetrabutylphosphonium bromide in various solvents, J. Chem. Eng. Data., 55, 2624-2629 (2010).

F.T. Guker, The apparent molal heat capacity, volume, and compressibility of electrolytes, Chem. Rev., 13,111-130 (1933).

N. Saha, B. Das, Apparent molar volumes of some symmetrical tetraalkylammonium bromides in acetonitrile at (298.15, 308.15, and 318.15) K, J. Chem. Eng. Data, 42, 227-229 (1997).

P.S. Naidu, K.R. Prasad, Ultrasonic velocity and allied parameters of cypermethrin with xylene and ethanol, Ind. J. Pure Appl. Phys., 42, 512-517 (2004).

S.K. Sharma, G. Singh, H. Kumar, R. Kataria, Thermodynamic study of N-acetyl glycine in aqueous tetraethylammonium iodide solutions in the temperature interval (288.15 to 308.15) K: Volumetric and acoustic study, J. Chem. Thermodyn., 94, 74-84 (2016).

Y. Zhao, H. Liu, Z. Min, J. Wang, Volumetric and viscosity properties for tetraalkylammonium bromides and some ions in PC+THF mixtures at 298.15 K, J. Mol. Liq., 223, 1172-1177 (2016).

H. Donald, B. Jenkins, Y. Marcus, Viscosity B-coefficients of ions in solution, Chem. Rev., 95, 2695-2724 (1995).

G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride, J. Am. Chem. Soc., 51, 2950-2964 (1929).

R.S. Patil, V.R. Shaikh, P.D. Patil, A.U. Borse, K.J. Patil, The viscosity B and D coefficient (Jones–Dole equation) studies in aqueous solutions of alkyl trimethylammonium bromides at 298.15 K, J. Mol. Liq., 200, 416-424 (2014).

H. Shekaari, M.T.Z. Moattar, S.N. Mirheydari, Density, viscosity, speed of sound, and refractive index of a ternary solution of aspirin, 1-butyl-3-methylimidazolium bromide, and acetonitrile at different temperatures T = (288.15 to 318.15) K, J. Chem. Eng. Data, 60, 1572-1583 (2015).

E. Tyunina, V. Afanas’ev, M. Chekunova, Viscosity and density of solutions of tetra ethyl ammonium tetrafluoroborate in propylene carbonate at different temperatures, J. Soln. Chem., 41, 307-317(2012).

T. Zhao, Q. Xu, J. Xiao, X. Wei, Excess properties and spectroscopic studies for binary system of polyethylene glycol 200 (1) + dimethyl sulfoxide (2) at T = (298.15 to 318.15) K, J. Chem. Eng. Data, 60, 2135-2145 (2015).

T. Ramanujappa, J.A. Bhavani, E.R. Gopal, N.M. Murthi, Excess sound velocity and excess specific acoustic impedance of (2,2,2-trifluoroethan-1-01 +benzene), (benzene+dimethylsulphoxide) and (2,2,2-trifluoroethan-1-01+dimethyl sulphoxide) at 298.15 K, Ind. J. Pure Appl. Phys., 38, 301-305 (2000).

A. Ali, S. Hyder, A. K. Nain, Intermolecular interactions in ternary liquid mixtures by ultrasonic velocity measurements, Ind. J. Phys., 74B, 63-67 (2000).

A.B. Naik, Densities, viscosities, speed of sound and some acoustical parameter studies of substituted pyrazoline compounds at different temperatures, Ind. J. Pure Appl. Phys., 53, 27-34 (2015).

N.J. Madhuri, P.S. Naidu, J. Glory. K.R. Prasad, Ultrasonic investigations of molecular interaction in binary mixtures of benzyl benzoate with acetonitrile and benzonitrile, E-J. Chem., 8, 457-469 (2011).

U. Domanska, M. Królikowska, Density and viscosity of binary mixtures of thiocyanate ionic liquids + water as a function of temperature, J. Soln. Chem., 41, 1422-1445 (2012).

M.G. Landge, S.S. Badade, B.V. Kendre, Density, ultrasonic velocity and viscosity measurements of glucose-alcohol-water mixtures at various temperatures, Int. J. Res. Chem. Environ., 3, 348-352 (2013).

S.S. Bittencourt, H.E. Hoga, R.B. Torres, J.V.H. Angelo, Thermodynamic and spectroscopic properties of binary mixtures of n-butylammonium butanoate ionic liquid with alcohols at T = (293.15–313.15) K, J. Chem. Thermodyn., 105, 238-252 (2017).

M.B. Gramajo de Doz, A.M. Cases, C.M. Bonatti, H.N. Sólimo, Influence of temperature on the (liquid + liquid) equilibria of {3-methyl pentane + cyclopentane + methanol} ternary system at T = (293.15, 297.15, and 299.15) K, J. Chem. Thermodyn., 41, 1279-1283 (2009).

M. Hasan, A.P. Hiray, U.B. Kadam, D. F. Shirude, K.J. Kurhe, A.B. Sawant, Densities, viscosities, speeds of sound, FT-IR and 1H-NMR studies of binary mixtures of n-butyl acetate with ethanol, propan-1-ol, butan-1-ol and pentan-1-ol at 298.15, 303.15, 308.15 and 313.15 K, J. Soln. Chem., 40, 415-429 (2011).

A.K. Nain, Ultrasonic and viscometric study of molecular interactions in binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at different temperatures, Fluid Phase Equilib., 259, 218-227 (2007).

Y. Xu, J. Yao, C. Wang, H. Li, Density, viscosity, and refractive index properties for the binary mixtures of n-butylammonium acetate ionic liquid + alkanols at several temperatures, J. Chem. Eng. Data, 57, 298-308 (2012).

U. Domanska, M. Zawadzki, A. Effect Królikowska, Effect of temperature and composition on the density, viscosity, surface tension, and thermodynamic properties of binary mixtures of N-octylisoquinoliniumbis{(trifluoromethyl)sulfonyl}imide with alcohols,J. Chem. Thermodyn., 48, 101-111 (2012).

Cómo citar

APA

Baluja, S. y Mo Alnayab, E. A. (2019). Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(3). https://doi.org/10.15446/rcciquifa.v48n3.84990

ACM

[1]
Baluja, S. y Mo Alnayab, E.A. 2019. Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures. Revista Colombiana de Ciencias Químico-Farmacéuticas. 48, 3 (sep. 2019). DOI:https://doi.org/10.15446/rcciquifa.v48n3.84990.

ACS

(1)
Baluja, S.; Mo Alnayab, E. A. Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures. Rev. Colomb. Cienc. Quím. Farm. 2019, 48.

ABNT

BALUJA, S.; MO ALNAYAB, E. A. Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 48, n. 3, 2019. DOI: 10.15446/rcciquifa.v48n3.84990. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/84990. Acesso em: 31 jul. 2024.

Chicago

Baluja, Shipra, y Elham Abdullah Mo Alnayab. 2019. «Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures». Revista Colombiana De Ciencias Químico-Farmacéuticas 48 (3). https://doi.org/10.15446/rcciquifa.v48n3.84990.

Harvard

Baluja, S. y Mo Alnayab, E. A. (2019) «Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures», Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(3). doi: 10.15446/rcciquifa.v48n3.84990.

IEEE

[1]
S. Baluja y E. A. Mo Alnayab, «Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures», Rev. Colomb. Cienc. Quím. Farm., vol. 48, n.º 3, sep. 2019.

MLA

Baluja, S., y E. A. Mo Alnayab. «Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 48, n.º 3, septiembre de 2019, doi:10.15446/rcciquifa.v48n3.84990.

Turabian

Baluja, Shipra, y Elham Abdullah Mo Alnayab. «Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures». Revista Colombiana de Ciencias Químico-Farmacéuticas 48, no. 3 (septiembre 1, 2019). Accedido julio 31, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/84990.

Vancouver

1.
Baluja S, Mo Alnayab EA. Volumetric behaviour of tetra-n-butyl ammonium bromide in various solvents at different temperatures. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 1 de septiembre de 2019 [citado 31 de julio de 2024];48(3). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/84990

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

405

Descargas

Los datos de descargas todavía no están disponibles.