Publicado
Talinum paniculatum: a plant with antifungal potential mitigates fluconazole-induced oxidative damage-mediated growth inhibition of Candida albicans
Talinum paniculatum: una planta con potencial antifúngico atenúa la inhibición del crecimiento de Candida albicans mediada por el daño oxidativo inducido por fluconazol
DOI:
https://doi.org/10.15446/rcciquifa.v49n2.89704Palabras clave:
Antimicrobial resistance, Candida albicans, Susceptibility, Reactive oxygen species, Talinum paniculatum, fluconazole (en)Resistencia a los antimicrobianos, Candida albicans, especies reactivas de oxígeno, Talinum paniculatum, fluconazole (es)
Descargas
Aims: This study investigated the bioactivity of the crude leaf extract (CLE) and fractions hexane (HX) and ethyl acetate (EtOAc) from Talinum paniculatum alone and in association with fluconazole (FLC) against reference strain and clinical isolates of FLC-resistant Candida albicans. Furthermore, the antioxidant capability, chemical composition of this plant, and the effect’s underlying mechanisms were evaluated. Methods: The antifungal activity was evaluated using checkerboard assay to establish the minimum inhibitory (MIC) and minimum microbicidal concentrations (MMC). During FLC and plant products challenges, the reactive oxygen species (ROS) generation (hydroxyl radicals [HO•]) were detected in C. albicans cells using the membrane-permeable fluorescent probes APF and HPF. High-performance liquid chromatography (HPLC) profile, quantitative analysis of antioxidant compounds, and free radical scavenging activity (DPPH assay) tests were performed. Results: The CLE and fractions presented outstanding antifungal activity and selectivity against C. albicans cells but had no synergistic effects with FLC. The MIC values for CLE and its fractions against C. albicans reference strain were in the order of HX (31.25 μg ml–1) < EtOAc (62.5 μg ml–1) < CLE (500 μg ml–1), and against FLC-resistant C. albicans HX (125 μg ml–1) = EtOAc < CLE (500 μg ml–1). CLE and its fractions had more potent antifungal activities than FLC against the clinical isolates. Moreover, fungicidal effects for these plant products were demonstrated against FLC-resistant C. albicans, which further confirmed an antifungal potential. Conversely, during association, plant products were shown to cause an increase in FLC MIC anywhere from 2- to 16-fold. FLC exposure led to an increase in the steady-state levels of ROS (HO•) in C. albicans cells. Next, we found that the increases in FLC MICs were owing to action of antioxidants containing-CLE and its fractions in preventing FLC-induced ROS-mediated growth inhibition of C. albicans. Conclusion: T. paniculatum can be a source of bioactive compounds with antifungal potential. However, because of the common use of its edible leaf, caution is advised during therapy with FLC (since it can decrease FLC susceptibility).
Objetivos: este estudio investigó la bioactividad del extracto de hoja en bruto (EHB) y las fracciones hexano (HX) y acetato de etilo (AcOEt) de Talinum paniculatum solo y en asociación con fluconazol (FLC) contra cepas de referencia y aislados clínicos de Candida albicans resistente a FLC. Además, evaluó la capacidad antioxidante, la composición química de esta planta y los mecanismos subyacentes del efecto fungicida. Métodos: la actividad antifúngica se evaluó mediante microdilución en caldo para establecer las concentraciones inhibitorias mínimas (CIM) y microbicidas mínimas (CMM). Durante el tratamiento con FLC y productos vegetales se detectó la generación de especies reactivas de oxígeno (ERO) (radicales hidroxilo [HO•]) en células de C. albicans utilizando las sondas fluorescentes permeables a la membrana APF y HPF. El perfil de cromatografía líquida de alta resolución (CLAR), el análisis cuantitativo de compuestos antioxidantes y el ensayo DPPH fueron evaluados. Resultados: el EHB y las fracciones presentaron una excelente actividad antifúngica y selectividad contra las células de C. albicans, pero no tuvieron efectos sinérgicos con FLC. Los valores de CIM para EHB y sus fracciones contra la cepa referencia de C. albicans fueron del orden de: HX (31,25 μg ml–1) < AcOEt (62,5 μg ml–1) < EHB (500 μg ml–1), y contra C. albicans resistente a FLC: HX (125 μg ml–1)= AcOEt < EHB (500 μg ml–1). EHB y sus fracciones fueron más potentes antifúngicos que FLC contra los aislados clínicos. Además, estos productos vegetales tienen efectos fungicidas contra C. albicans resistentes a FLC, esto confirmó el potencial antifúngico. Por el contrario, durante la asociación se demostró que los productos vegetales causan un aumento en la CIM de FLC de 2 a 16 veces. La exposición a FLC aumentó los niveles de ERO (HO•) en las células de C. albicans. Los aumentos en las CIM de FLC se debieron a la acción de los antioxidantes presentes en EHB y sus fracciones para prevenir la inhibición del crecimiento mediada por ERO inducida por FLC en C. albicans. Conclusión: T. paniculatum puede ser una fuente de compuestos bioactivos con potencial antifúngico. Sin embargo, debido al uso común de su hoja comestible, se recomienda usarla con precaución durante la terapia con FLC (ya que puede disminuir la susceptibilidad a FLC).
Referencias
F.C. Tenover, Mechanisms of antimicrobial resistance in bacteria, Am. J. Med., 119, S3-S10 (2006).
W. Liu, L.P. Li, J.D. Zhang, et al., Synergistic antifungal effect of glabridin and fluconazole, PLoS ONE, 9, e103442 (2014).
J. Tanwar, D. Das, Z. Fatima, et al., Multidrug resistance: an emerging crisis, Interdisc. Persp. Infect. Dis., 2014, Article ID 541340, 7 (2014).
S. Baker, A return to the pre-antimicrobial era? Science, 347, 1064-1066 (2015).
M.P. Brynildsen, J.A. Winkler, C.S. Spina, et al., Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production, Nature Biotechnol., 31, 160-165 (2013).
L. Imamovic, M.O.A. Sommer, Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development, Sci. Translat. Med., 5(204), 204ra132 (2013).
M.A. Perros, Sustainable model for antibiotics, Science, 347, 1062-1064 (2015).
L. García-Agudo, P. García-Martos, P. Marín-Casanova, et al., Susceptibility to fluconazole of clinical interest yeasts: new breakpoints, Rev. Esp. Quimioter., 25, 266-268 (2012).
D.M. Arana, C. Nombela, J. Pla, Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of Candida albicans to phagocytes, J. Antimicrob. Chemother., 65, 54-62 (2010).
IOM (Institute of Medicine), Antibiotic resistance: Implications for global health and novel intervention strategies, The National Academies Press, Washington, D.C., 2010.
M.A. Kohanski, M.A. DePristo, J.J. Collins, Sub-lethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis, Mol. Cell, 37, 311-320 (2010).
Centers for Disease Control and Prevention (CDC), Antibiotic Resistant Threats in the United States, U.S. Department of Health and Human Services, Atlanta, GA, 2013, p. 114.
S.S. Grant, D.T. Hung, Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response, Virulence, 4, 273-283 (2013).
M.M. Cowan, Plant products as antimicrobial agents, Clin. Microbiol. Rev., 12, 564-582 (1999).
J. Caribe, J.M. Campos, Plantas que ajudam o homem: guia prático para época, Cultrix/Pensamento, São Paulo, 1991.
C. Sukwan, S. Wray, S. Kupittayanant, The effects of Ginseng Java root extract on uterine contractility in nonpregnant rats, Physiol. Reports, 2, e12230 (2014).
H. Shimoda, N. Nishida, K. Ninomiya, et al., Javaberine A, new TNF-alpha and nitric oxide production inhibitor, from the roots of Talinum paniculatum, Heterocycles, 55, 2043-2050 (2001).
L.F. Reis, C.D. Cerdeira, B.F. Paula, et al., Chemical characterization and evaluation of antibacterial, antifungal, antimycobacterial, and cytotoxic activities of Talinum paniculatum, Rev. Inst. Med. Trop. Sao Paulo, 57, 397-405 (2015).
C. Thanamool, P. Papirom, S. Chanlun, et al., Talinum paniculatum (Jacq.) Gertn: a medicinal plant with potential estrogenic activity in ovariectomized rats, Int. J. Pharm. Pharm. Sci., 5, 478-485 (2013).
C. Thanamool, A. Thaeomor, S. Chanlun, et al., Evaluating the anti-fertility activity of Talinum paniculatum (Jacq.) Gaertnin female Wistar rats, Aust. J. Plant Physiol., 7, 1802-1807 (2013).
M.P.O. Ramos, G.D.F. Silva, L.P. Duarte, et al. Antinociceptive and edematogenic activity and chemical constituents of Talinum paniculatum willd, J. Chem. Pharm. Res., 2, 265-274 (2010).
C.D. Mahl, C.S. Behling, F.S. Hackenhaar, et al., Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage, Diagn. Microbiol. Infect. Dis., 82, 203-208 (2015).
C.R. Silva, J.B.A. Neto, J.J.C. Sidrim, et al., Synergistic effects of amiodarone and fluconazole on Candida tropicalis resistant to fluconazole, Antimicrob. Agents Chemother., 57, 1691-1700 (2013).
I. Albesa, M.C. Becerra, P.C. Battan, et al., Oxidative stress involved in the antibacterial action of different antibiotics, Biochem. Biophys. Res. Commun., 317, 605-609 (2004).
M. Goswami, S.H. Mangoli, N. Jawal, Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli, Antimicrob. Agents Chemother., 50, 949-954 (2006).
D. Kobayashi, K. Kondo, N. Uehara, et al., Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect, Antimicrob. Agents Chemother., 46, 3113-3117 (2002).
G. Smirnova, Z. Samoilova, N. Muzyka, et al., Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of Escherichia coli, J. Appl. Microbiol., 113, 192-199 (2012).
I. Keren, Y. Wu, J. Inocencio, L.R. Mulcahy, K. Lewis, Killing by bactericidal antibiotics does not depend on reactive oxygen species, Science, 339, 1213-1216 (2013).
A.C. Brewer, S.B. Mustafi, T.V.A. Murray, et al., Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease, Antioxid. Redox Signal., 18, 1114-1127 (2013).
E. Piskounova, M. Agathocleous, M.M. Murphy, et al., Oxidative stress inhibits distant metastasis by human melanoma cells, Nature, 527, 186-191 (2015).
J.J. da Silva, T.A. da Silva, H. de Almeida, M.F.R. Netto, C.D. Cerdeira, J.F. Höfling, M.F.G. Boriollo, Candida species biotypes in the oral cavity of infants and children with orofacial clefts under surgical rehabilitation, Microb. Pathogen., 124, 203-215 (2018).
Clinical and Laboratory Standards Institute (CLSI), Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard M27-A3, 3rd ed., CLSI, Wayne, 2008.
K.I. Setsukinai, Y. Urano, K. Kakinuma, et al., Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species, J. Biol. Chem., 278, 3170-3175 (2003).
S. Fattahi, E. Zabihi, Z. Abedian, et al., Total phenolic and flavonoid contents of aqueous extract of Stinging Nettle and in vitro antiproliferative effect on Hela and BT-474 cell lines, Int. J. Mol. Cell. Med., 3, 102-107 (2014).
F.C. Odds, Synergy, antagonism, and what the chequerboard puts between them, J. Antimicrob. Chemother., 52, 1 (2003).
J. Meletiadis, S. Pournaras, E. Roilides, et al., Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus, Antimicrob. Agents Chemother., 54, 602-609 (2010).
O.P. Salin, L.L. Pohjala, P. Saikku, et al., Effects of coadministration of natural polyphenols with doxycycline or calcium modulators on acute Chlamydia pneumonia infection in vitro, J. Antibiotics, 64, 747-752 (2011).
K. Konaté, J.F. Mavoungou, A.N. Lepengué, et al., Antibacterial activity against β-lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: fractional Inhibitory Concentration Index (FICI) determination, Ann. Clin. Microbiol. Antimicrob., 11, 18 (2012).
J.D. Tamokou, J.R. Kuiate, M. Tene, et al., The antimicrobial activities of extract and compounds isolated from Brillantaisia lamium, Iran. J. Med. Sci., 36, 24-31 (2011).
Y. Yoshida, E. Niki, Antioxidant effects of phytosterol and its components, J. Nutr. Sci. Vitaminol. (Tokyo), 49, 277-280 (2003).
O.A.K. Khalil, O.M.M. de Faria Oliveira, J.C.R. Vellosa, et al., Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid, Food Chem., 133, 1001-1005 (2012).
M. Tajkarimi, S.A. Ibrahim, Antimicrobial activity of ascorbic acid alone or in combination with lactic acid on Escherichia coli O157:H7 in laboratory medium and carrot juice, Food Control, 22, 801-804 (2011).
B.M. Abu-Ghazaleh, Effects of ascorbic acid, citric acid, lactic acid, NaCl, potassium sorbate and Thymus vulgaris extract on Staphylococcus aureus and Escherichia coli, African J. Microbiol. Res., 7, 7-12 (2013).
M. Goswami, S.H. Mangoli, N. Jawali, Antibiotics and antioxidants: Friends or foes during therapy? BARC Newsletter, 323, 42-46 (2011).
A. López, D.S. Ming, G.H.N. Towers, Antifungal activity of benzoic acid derivatives from Piper lanceaefolium, J. Nat. Prod., 65, 62-64 (2002).
O. Drăcea, C. Larion, M.C. Chifiriuc, et al., New thioureides of 2-(4-methylphenoxymethyl) benzoic acid with antimicrobial activity, Roum. Arch. Microbiol. Immunol., 67, 92-97 (2008).
B. Velika, I. Kron, Antioxidant properties of benzoic acid derivatives against superoxide radical, Free Radic. Antioxid., 2, 62-67 (2012).
D.F. Basri, L.W. Xian, N.I.A. Shukor, et al., Bacteriostatic antimicrobial combination: Antagonistic interaction between epsilon-viniferin and vancomycin against methicillin-resistant Staphylococcus aureus, BioMed Res. Int., 2014, Article ID 461756, 8 (2014).
D.R. Oliveira, S.R. Tintino, M.F.B.M. Braga, et al., In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin, BioMed Res. Int., 2015, Article ID 292797, 7 (2015).
W.S. Sung, D.G. Lee, Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption, Pure Appl. Chem., 82, 219-226 (2010).
Z. Lou, H. Wang, S. Zhu, et al., Antibacterial activity and mechanism of action of chlorogenic acid, J. Food Sci., 76, M398-403 (2011).
M.J. Alves, I.C. Ferreira, H.J. Froufe, et al., Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies, J. Appl. Microbiol., 115, 346-357 (2013).
Y. Sato, S. Itagaki, T. Kurokawa, et al., In vitro, and in vivo antioxidant properties of chlorogenic acid and caffeic acid, Int. J. Pharm., 403, 136-138 (2011).
S. Hemaiswarya, M. Doble, Synergistic interaction of phenylpropanoids with antibiotics against bacteria, J. Med. Microbiol., 59, 1469-1476 (2010).
N.H. Aziz, S.E. Farag, L.A. Mousa, et al., Comparative antibacterial and antifungal effects of some phenolic compounds, Microbios, 93, 43-54 (1998).
M.S. Barber, V.S. McConnell, B.S. DeCaux, Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways, Phytochemistry, 54, 53-56 (2000).
D. Stojković, J. Petrović, M. Soković, et al., In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems, J. Sci. Food Agric., 93, 3205-3208 (2013).
B.K. Sarma, U.P. Singh, Ferulic acid may prevent infection of Cicer arietinum by Sclerotium rolfsii, World J. Microbiol. Biotechnol., 19, 123-127 (2003).
A. Borges, C. Ferreira, M.J. Saavedra, et al., Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria, Microb. Drug Resist., 19, 256-265 (2013).
M. Srinivasan, A.R. Sudheer, V.P. Menon, Ferulic acid: Therapeutic potential through its antioxidant property, J. Clin. Biochem. Nutr., 40, 92-100 (2007).
F.L. Mayer, D. Wilson, B. Hube, Candida albicans pathogenicity mechanisms, Virulence, 4, 119-128 (2013).
M.A. Rawashdeh, J.A. Ayesh, A.M. Darwazeh, Oral candidal colonization in cleft patients as a function of age, gender, surgery, type of cleft, and oral health, J. Oral Maxillofac. Surg., 69, 1207-1213 (2011).
S. Dalleau, E. Cateau, T. Bergès, et al., In vitro activity of terpenes against Candida biofilms, Int. J. Antimicrob. Agents, 31, 572-576 (2008).
J.R. Graybill, D.S. Burgess, T.C. Hardin, Key issues concerning fungistatic versus fungicidal drugs, Eur. J. Clin. Microbiol. Infect. Dis., 16, 42-50 (1997).
M.W. Biavatti, Synergy: an old wisdom, a new paradigm for pharmacotherapy, Braz. J. Pharm. Sci., 45, 371-378 (2009).
J.M. Choi, E.O. Lee, H.J. Lee, et al., Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities, Phytother. Res., 21, 954-959 (2007).
A.C. Holloway, S.W.J. Gould, M.D. Fielder, et al., Enhancement of antimicrobial activities of whole and sub-fractionated white tea by addition of copper (II) sulphate and vitamin C against Staphylococcus aureus; a mechanistic approach, BMC Complement. Altern. Med., 11, 115 (2011).
Y. Liu, J.A. Imlay, Cell death from antibiotics without the involvement of reactive oxygen species, Science, 339, 1210-1213 (2013).
D.J. Dwyer, P.A. Belenky, J.H. Yang, et al., Antibiotics induce redox-related physiological alterations as part of their lethality, Proc. Natl. Acad. Sci. USA, 111, E2100-E2109 (2014).
C.E.B. Linares, S.R. Giacomelli, D. Altenhofen, et al., Fluconazole and amphotericin-B resistance are associated with increased catalase and superoxide dismutase activity in Candida albicans and Candida dubliniensis, Rev. Soc. Bras. Med. Trop., 46, 752-758 (2013).
D. Nguyen, A. Joshi-Datar, F. Lepine, et al., Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria, Science, 334, 982-986 (2011).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. João Paulo Lopes Jordão , Gabriel Lopes Chaves , Guilherme Fantinato , Kamila Oliveira de Luca Rotondo , Michele Caroline Terra , Sofia de Castro Oliveira , Aluisio Eustáquio de Freitas Miranda Filho , Ana Claudia Frota Lopes , Roberta Bessa Veloso Silva , Bruno Cesar Correa Salles , Cláudio Daniel Cerdeira, Gérsika Bitencourt Santos Barros . (2024). Parâmetros bioquímicos e morfológicos em ratos diabéticos tratados com extratos de Ora-Pro-Nóbis (Pereskia aculeata). Revista Fitos, 18 https://doi.org/10.32712/2446-4775.2024.1328.
2. Cláudio Daniel Cerdeira, Maísa R. P. L. Brigagão. (2024). Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunological Investigations, 53(7), p.1030. https://doi.org/10.1080/08820139.2024.2367682.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13