Publicado

2021-05-17

Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies

Luliconazol: método por LC indicativo de estabilidad, elucidación estructural del producto de degradación mayoritario por HRMS y estudios in silico

Luliconazol: método LC indicativo de estabilidade, elucidação estrutural do principal produto de degradação por HRMS e estudos in sílico

DOI:

https://doi.org/10.15446/rcciquifa.v50n1.89717

Palabras clave:

Luliconazole, stability-indicating method, forced degradation, degradation product, in silico study, zeneth software. (en)
Luliconazol, método indicativo de estabilidade, degradação forçada, produto de degradação, estudos in silico, software zeneth. (pt)
Luliconazol, método indicativo de la estabilidad, degradación forzada, producto de degradación, estudios in silico, software zeneth. (es)

Autores/as

  • Douglas dos Santos Porto Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade. Curso de Farmácia. Universidade Federal do Pampa (UNIPAMPA, Campus Uruguaiana-RS), BR 472 Km 585, CEP 97500-970, Uruguaiana (RS)
  • Lisiane Bajerski Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade. Curso de Farmácia. Universidade Federal do Pampa (UNIPAMPA, Campus Uruguaiana-RS), BR 472 Km 585, CEP 97500-970, Uruguaiana (RS)
  • Marcelo Donadel Malesuik Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade. Curso de Farmácia. Universidade Federal do Pampa (UNIPAMPA, Campus Uruguaiana-RS), BR 472 Km 585, CEP 97500-970, Uruguaiana (RS)
  • Juliano Braun Azeredo Programa de Pósgraduação em Ciências Farmacêuticas. Curso de Farmácia. Universidade Federal do Pampa (UNIPAMPA, Campus Uruguaiana-RS), BR 472 Km 585, CEP 97500-970, Uruguaiana (RS)
  • Fávero Reisdorfer Paula Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade. Curso de Farmácia. Universidade Federal do Pampa (UNIPAMPA, Campus Uruguaiana-RS), BR 472 Km 585, CEP 97500-970, Uruguaiana (RS)
  • Clésio Soldateli Paim Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade. Curso de Farmácia. Universidade Federal do Pampa (UNIPAMPA, Campus Uruguaiana-RS), BR 472 Km 585, CEP 97500-970, Uruguaiana (RS)

Aim: A new stability-indicating liquid chromatography method was developed and validated for the quantitative determination of luliconazole. Materials and methods: Preliminary forced degradation study demonstrated an additional peak of the degradation product at the same retention time to the drug, due to this, the method was developed optimizing the chromatographic conditions to provide sufficient peak resolution (R ≥ 2). The experimental design was evaluated to assess the robustness and the best chromatographic conditions to be used for the validation. Methodology: Luliconazole solutions were exposed to various stress conditions to evaluate the method indication stability, in which the degradation product (DP-1) formed was isolated, identified, and evaluated in silico to predict degradation pathway and toxicity. The procedure was validated by robustness, selectivity, linearity, precision, and accuracy. Liquid chromatography was performed in a Phenomenex® RP-18 column with a mixture of acetonitrile and 0.3% (v/v) triethylamine solution as a mobile phase in isocratic elution. Results and conclusions: The method demonstrated robustness, good recovery, precision, linear response over a range from 5.0 to 40.0 μg.mL-1, and to be stability indicating. The alkaline stress condition resulted in the formation of DP-1. hrms studies identified this product as an hydroxyacetamide derivative, and in silico studies did not show toxic potential.

Objetivo: un nuevo método indicativo de estabilidad por cromatografía líquida fue desarrollado y validado para la determinación cuantitativa de luliconazol. Materiales y métodos: estudios preliminares de degradación forzada demostraron un pico adicional en el mismo tiempo de retención del fármaco. El método desarrollado para optimizar las condiciones cromatográficas proporcionó una adecuada resolución (R ≥ 2). El diseño experimental fue evaluado para verificar su robustez y la mejor condición cromatográfica para validación. Metodología: las soluciones de luliconazol fueron expuestas a diferentes condiciones de estrés para evaluar la indicación de estabilidad del método, el aislamiento del producto de degradación formado (DP-1), su identificación y análisis in silico para predecir su ruta de degradación y toxicidad. El procedimiento se validó por robustez, selectividad, linealidad, precisión y exactitud. Las condiciones cromatográficas incluyeron una columna Phenomenex® RP-18, como fase móvil una mezcla de acetonitrilo y solución 0,3% (v/v) de  trietilamina en elución isocrática. Resultados y conclusiones: el método mostró ser robusto, con buena recuperación, precisión, respuesta lineal en el rango de 5,0 a 40,0 μg.mL-1 e indicativo de la estabilidad. La condición de estrés alcalina resultó en la formación de DP-1. Estudios por hrms identificaron este producto como un derivado hidroxiacetamida y los estudios in silico no mostraron potencial de toxicidad.

Objetivo: um novo método indicativo de estabilidade por cromatografia líquida foi desenvolvido e validado para a determinação quantitativa de luliconazol. Materiais e métodos: estudos preliminares de degradação forçada demonstraram um pico adicional no mesmo tempo de retenção do medicamento. O método desenvolvido para otimizar as condições cromatográficas proporcionou resolução adequada (R ≥ 2). O delineamento experimental foi avaliado para verificar sua robustez e a melhor condição cromatográfica para validação. Metodologia: soluções de luliconazol foram expostas a diferentes condições de estresse para avaliar a indicação da estabilidade do método, o isolamento do produto de degradação formado (DP-1), sua identificação e análise in silico para predizer sua rota de degradação e toxicidade. O procedimento foi validado quanto à robustez, seletividade, linearidade, precisão e exatidão. As condições cromatográficas incluíram uma coluna Phenomenex® RP-18, como fase móvel uma mistura de acetonitrila e solução de trietilamina 0,3% (v/v) em eluição isocrática. Resultados e conclusões: o método mostrou-se robusto, com boa recuperação, precisão, resposta linear na faixa de 5,0 a 40,0 μg.mL-1 e indicativo de estabilidade. A condição de estresse alcalino resultou na formação de DP-1. Os estudos da hrms identificaram este produto como um derivado da hidroxiacetamida e os estudos in silico não mostraram nenhum potencial de toxicidade.

Referencias

D. Khanna, S. Bharti, Luliconazole for the treatment of fungal infections: an evidence-based review, Core Evid., 9, 113-124 (2014).

R. Prasad, A.H. Shah, M.K. Rawal, Antifungals: Mechanism of action and drug resistance. In: Yeast Membrane Transport, Edited by J. Ramos, H. Sychrová, M. Kschischo, Springer, Cham, 2016, Vol. 892, pp. 327-349.

H. Koga, Y. Nanjoh, K. Makimura, R. Tsuboi, In vitro antifungal activities of luliconazole, a new topical imidazole, Med. Mycol., 47, 640-647 (2009).

M.H. Gold, J.T. Olin, Once-daily luliconazole cream 1% for the treatment of interdigital tinea pedis, Expert Rev. Anti-Infect. Ther., 13, 1433-1440 (2015).

A. Shokri, M. Abastabar, M. Keighobadi, S. Emami, M. Fakhar, S.H. Teshnizi, K. Makimura, A. Rezaei-Matehkolaei, H. Mirzaei, Promising antileishmanial activity of novel imidazole antifungal drug luliconazole against Leishmania major: In vitro and in silico studies, J. Glob. Antimicrob. Resist., 14, 260-265 (2018).

S. Taghipour, N. Kiasat, S. Shafiei, M. Halvaeezadeh, A. Rezaei-Matehkolaei, A.Z. Mahmoudabadi, Luliconazole, a new antifungal against Candida species isolated from different sources, J. Mycol. Med., 28, 374-378 (2018).

M. Ghannoum, Azole resistance in dermatophytes, J. Am. Podiatric Med. Assoc., 106, 79-86 (2016).

A.K. Gupta, D. Daigle, A critical appraisal of once-daily topical luliconazole for the treatment of superficial fungal infections, Infect. Drug Resist., 9, 1-6 (2016).

M. Blessy, R.D. Patel, P.N. Prajapati, Y.K. Agrawal, Development of forced degradation and stability indicating studies of drugs -A review, J. Pharm. Anal., 4, 159-165 (2014).

A. Ayre, P. Mane, K. Ghude, M. Nemade, P. Gride, Implementing Quality by Design -A methodical approach in the RP-HPLC method development process, Int. J. Adv. Pharm. Anal., 4, 1-6 (2014).

ICH Harmonised Tripartite Guideline, Stability Testing of New Drug Substance and Products: methodology Q1A(R2), URL: https://database.ich.org/sites/default/files/Q1A%28R2%29%20Step4.pdf, accessed December 2019.

S.R.O. Melo, M. Homem-de-Mello, D. Silveira, L.A. Simeoni, Advice on degradation products in pharmaceuticals: A toxicological evaluation, PDA J. Pharm. Sci. Technol., 68, 221-238 (2014).

S. Torres, R. Brown, R. Szucs, J.M. Hawkins, T. Zelesky, G. Scrivens, A. Pettman, M.R. Taylor, The application of electrochemistry to pharmaceutical stability testing. Comparison with in silico prediction and chemical forced degradation approaches, J. Pharm. Biomed. Anal., 115, 487-501 (2015).

C. Foti, K. Alsante, G. Cheng, T. Zelesky, M. Zell, Tools and workflow for structure elucidation of drug degradation products, TrAC, Trends Anal. Chem., 49, 89-99 (2013).

K.M. Alsante, K. Huynh-Ba, S.W. Baertschi, R.A. Reed, M.S. Landis, M.H. Kleinman, C. Foti, V.M. Rao, P. Meers A. Abend, D.W. Reynolds, B.K. Joshi, Recent trends in product development and regulatory issues on impurities in active pharmaceutical ingredient (API) and drug products. Part 1: Predicting degradation related impurities and impurity considerations for pharmaceutical dosage forms, AAPS PharmSciTech, 15, 198-212 (2014).

A.D.C. Parenty, W.G. Button, M.A. Ott, An expert system to predict the forced degradation of organic molecules, Mol. Pharmaceutics, 10, 2962-2974 (2013).

A. Naz, R. Iqtadar, F.A. Siddiqui, Z. Ul-Haq, Degradation kinetics of fluvoxamine in buffer solutions: In silico ADMET profiling and identification of degradation products by LC-MS/ESI, Arabian J. Chem., 13, 4134-4146 (2020).

S.W. Baertschi, J. DiMartino, An Update for Pharmaceutical Stress Testing Enabled by Modern Informatics Technologies, URL: https://www.acdlabs.com/download/whitepaper/whitepaper-stress-testing.pdf, accessed January 2020.

M.H. Kleinman, S.W. Baertschi, K.M. Alsante, D.L. Reid, M.D. Mowery, R. Shimanovich, C. Foti, W.K. Smith, D.W. Reynolds, M. Nefliu, M.A. Ott, In silico prediction of pharmaceutical degradation pathways: a benchmarking study, Mol. Pharmaceutics, 11, 4179-4188 (2014).

Y. He, G. Peiwu, C. Wang, Y. Lian, Z. Liu, S. Yang, Y. Lin, C. Wen, T. Ding, Pharmacokinetic study of luliconazole in rat by UPLC-MS/MS, Lat. Am. J. Pharm., 34, 810-815 (2015).

S. Gummadi, M. Kommoju, Quantification and stability aspects of Luliconazole in bulk and pharmaceutical dosage forms by UV spectroscopy, J. Drug Delivery Ther., 9, 300-306 (2019).

N.J. Desai, D.G. Maheshwari, UV spectrophotometric method for the estimation of luliconazole in marketed formulation (lotion), Pharma Sci. Monit., 5, 48-54 (2014).

T.M. Keriwala, G. Sanghani, Z. Dedania, V.C. Jain, Development and validation of simultaneous UV spectroscopy method for luliconazole and beclomethazone dipropionate in combined pharmaceutical dosage form, Pharma Sci. Monit., 10, 93-107 (2017).

M.A. Sultan, M.M.A. El-Alamin, M.A. Atia, H.Y. Aboul-Enein, Stability-indicating methods for the determination of luliconazole by TLC and HPTLC, densitometry in bulk powder and cream dosage form, J. Planar Chromatogr. Mod. TLC, 30, 68-74 (2017).

T. Majumder, Md.R. Hasan, P. Roy, R. Pramanik, Md.N. Hasan, Method development and validation of RP-HPLC method for estimation of luliconazole in marketed formulation (Cream), Pharma Innovation, 8, 103-108 (2019).

S. Sonawane, P. Gide, Application of experimental design for the optimization of forced degradation and development of a validated stability-indicating LC method for luliconazole in bulk and cream formulation, Arabian J. Chem., 9, 1428-1434 (2016).

A. Malasiya, A. Goyal, Method development and validation of RP HPLC method for assay and related substances of luliconazole in topical dosage form. Int. J. Pharm. Chem. Anal., 4, 46-50 (2017).

ICH Harmonised Tripartite Guideline, Validation of Analytical Procedure: Text and Methodology Q2 (R1), URL: https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf, accessed December 2019.

Y.V. Heyden, A. Nijhuis, J. Smeyers-Verbeke, B.G.M. Vandeginste, D.L. Massart, Guidance for robustness/ruggedness tests in method validation, J. Pharm. Biomed. Anal., 24, 723-753 (2001).

T. Sander, Molecular Property Prediction- Osiris Property Explorer, URL: https://www.organic-chemistry.org/prog/peo/, accessed April 2020.

D.E.V. Pires, T.L. Blundell, D.B. Ascher, pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J. Med. Chem., 58, 4066-4072 (2015).

FDA Center for Drug Evaluation and Research, Reviewer guidance: validation of chromatographic methods, URL: https://www.fda.gov/media/75643/download, accessed December 2019.

G.A. Shabir, Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization, J. Chromatogr. A., 987, 57-66 (2003).

K.M. Alsante, A. Ando, R. Brown, J. Ensing, T.D. Hatajik, W. Kong, Y. Tsuda, The role of degradant profiling in active pharmaceutical ingredients and drug products, Adv. Drug Delivery Rev., 59, 29-37 (2007).

T.A. Geissman, The Cannizzaro Reaction. In: Organic Reactions, Edited by R. Adams, Wiley-Interscience, New York, 1991, Vol. 2, pp. 99-113.

C.F. Bernasconi, K.W. Kittredge, Carbanion stabilization by adjacent sulfur: polarizability, resonance, or negative hyperconjugation? experimental distinction based on intrinsic rate constants of proton transfer from(phenylthio)nitromethane and 1-nitro-2-phenylethane, J. Org. Chem., 63, 1944-1953 (1998).

O.J. Mieden, C. Von-Sonntag, Oxidation of cyclic dipeptide radicals in aqueous solution: the rapid hydration of the intermediate 1,6-dihydropyrazine-2,5-diones (cyclic dehydrodipeptides). A pulse-radiolysis study, J. Chem. Soc., Perkin Trans. 2, 12, 2071-2078 (1989).

R.K. Singh, A. Kumar, A.K. Mishra, Chemistry and pharmacology of acetanilide derivatives: a mini review, Lett. Org. Chem., 16, 6-15 (2019).

Z.A. Kaplancikli, M.D. Altintop, G. Turan-Zitouni, A. Ozdemir, O.D. Can, Synthesis and analgesic activity of some acetamide derivatives, J. Enzyme Inhib. Med. Chem., 27, 275-280 (2012).

S.N. Lavorato, M.C. Duarte, P.H.R. De Andrade, E.A.F. Coelho, R.J. Alves, Synthesis, antileishmanial activity and QSAR studies of 2‑chloro‑N-arylacetamides, Braz. J. Pharm. Sci., 53, 1-7 (2017).

E. Hernández-Núñez, H. Tlahuext, R. Moo-Puc, D. Moreno, M.O. González-Díaz, G.N. Vázquez, Design, synthesis and biological evaluation of 2-(2-amino-5(6)-nitro-1H-benzimidazol-1-yl)-narylacetamides as antiprotozoal agents, Molecules, 22, 1-16 (2017).

P.M.P. Ferreira, K.C. Machado, S.N. Lavorato, F.C.E. De Oliveira, J.N. Silva, A.A.C. de Almeida, L.S. Santos, V.R. Silva, D.P. Bezerra, M.B.P. Soares, J.M.C. Souza, V.G. Maltarollo, R.J. Alves, Pharmacological and physicochemical profile of arylacetamides as tools against human cancers, Toxicol. Appl. Pharmacol., 380, 114692 (2019).

S.A. Katke, S.V. Amrutkar, R.J. Bhor, M.V. Khairnar, Synthesis of biologically active 2-chloro- n-alkyl / aryl acetamide derivatives, Int. J. Pharma Sci. Res., 2, 148-156 (2011).

Cómo citar

APA

Porto, D. dos S., Bajerski, L., Malesuik, M. D., Braun Azeredo, J., Paula, F. R. y Soldateli Paim, C. (2021). Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies. Revista Colombiana de Ciencias Químico-Farmacéuticas, 50(1). https://doi.org/10.15446/rcciquifa.v50n1.89717

ACM

[1]
Porto, D. dos S., Bajerski, L., Malesuik, M.D., Braun Azeredo, J., Paula, F.R. y Soldateli Paim, C. 2021. Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies. Revista Colombiana de Ciencias Químico-Farmacéuticas. 50, 1 (may 2021). DOI:https://doi.org/10.15446/rcciquifa.v50n1.89717.

ACS

(1)
Porto, D. dos S.; Bajerski, L.; Malesuik, M. D.; Braun Azeredo, J.; Paula, F. R.; Soldateli Paim, C. Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies. Rev. Colomb. Cienc. Quím. Farm. 2021, 50.

ABNT

PORTO, D. dos S.; BAJERSKI, L.; MALESUIK, M. D.; BRAUN AZEREDO, J.; PAULA, F. R.; SOLDATELI PAIM, C. Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 50, n. 1, 2021. DOI: 10.15446/rcciquifa.v50n1.89717. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/89717. Acesso em: 17 jul. 2024.

Chicago

Porto, Douglas dos Santos, Lisiane Bajerski, Marcelo Donadel Malesuik, Juliano Braun Azeredo, Fávero Reisdorfer Paula, y Clésio Soldateli Paim. 2021. «Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies». Revista Colombiana De Ciencias Químico-Farmacéuticas 50 (1). https://doi.org/10.15446/rcciquifa.v50n1.89717.

Harvard

Porto, D. dos S., Bajerski, L., Malesuik, M. D., Braun Azeredo, J., Paula, F. R. y Soldateli Paim, C. (2021) «Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies», Revista Colombiana de Ciencias Químico-Farmacéuticas, 50(1). doi: 10.15446/rcciquifa.v50n1.89717.

IEEE

[1]
D. dos S. Porto, L. Bajerski, M. D. Malesuik, J. Braun Azeredo, F. R. Paula, y C. Soldateli Paim, «Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies», Rev. Colomb. Cienc. Quím. Farm., vol. 50, n.º 1, may 2021.

MLA

Porto, D. dos S., L. Bajerski, M. D. Malesuik, J. Braun Azeredo, F. R. Paula, y C. Soldateli Paim. «Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 50, n.º 1, mayo de 2021, doi:10.15446/rcciquifa.v50n1.89717.

Turabian

Porto, Douglas dos Santos, Lisiane Bajerski, Marcelo Donadel Malesuik, Juliano Braun Azeredo, Fávero Reisdorfer Paula, y Clésio Soldateli Paim. «Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies». Revista Colombiana de Ciencias Químico-Farmacéuticas 50, no. 1 (mayo 17, 2021). Accedido julio 17, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/89717.

Vancouver

1.
Porto D dos S, Bajerski L, Malesuik MD, Braun Azeredo J, Paula FR, Soldateli Paim C. Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by HRMS and in silico studies. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 17 de mayo de 2021 [citado 17 de julio de 2024];50(1). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/89717

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

227

Descargas

Los datos de descargas todavía no están disponibles.