Publicado

2020-05-01

Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action

Las hojas de Talinum paniculatum con actividad antimicrobiana in vitro contra cepas de referencia y clínicas de Staphylococcus aureus interfieren con la acción de la oxacilina

DOI:

https://doi.org/10.15446/rcciquifa.v49n2.89894

Palabras clave:

Antimicrobial resistance, Staphylococcus aureus, reactive oxygen species, oxacillin, Talinum paniculatum (en)
Resistencia a los antimicrobianos, Staphylococcus aureus, oxacilina, Talinum paniculatum (es)

Autores/as

  • Cláudio Daniel Cerdeira Department of Biochemistry (DBc), Institute of Biomedical Sciences (IBS), Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais (MG)
  • Jeferson J. da Silva Laboratory of Microbiology and Immunology, Department of Oral Diagnostic, Dental school of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, 13414-903, São Paulo (SP)
  • Manoel F. R. Netto Laboratory of Microbiology and Immunology, Department of Oral Diagnostic, Dental school of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, 13414-903, São Paulo
  • Marcelo F. G. Boriollo Laboratory of Microbiology and Immunology, Department of Oral Diagnostic, Dental school of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, 13414-903, São Paulo
  • Gérsika B. Santos Department of Biochemistry (DBc), Institute of Biomedical Sciences (IBS), Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais (MG)
  • Luis F. C. dos Reis Laboratory of Medicinal Plants, UNIFAL-MG, Alfenas, 37130-001, MG
  • Maísa R. P. L. Brigagão Department of Biochemistry (DBc), Institute of Biomedical Sciences (IBS), Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, Minas Gerais (MG)

Propose: We evaluated the antibacterial potential of the crude leaf extract (CLE) and fractions hexane (HX) and ethyl acetate (EtOAc) from Talinum paniculatum alone and in association with oxacillin (OXA) against OXA-resistant Staphylococcus aureus (ORSA, environment isolates) and OXA-sensitive S. aureus (OSSA, ATCC 25923). Furthermore, toxicity tests were performed. Methods: The antibacterial activity was evaluated through checkerboard assay (broth microdilution) to establish the minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC). Toxicity test in mice was assessed. Results: The MIC values for the CLE and its fractions against ORSA and OSSA were in the order of HX (500 μg ml–1) = EtOAc < CLE (4000 μg ml–1). EtOAc and HX presented outstanding antibacterial activities against ORSA, and these fractions were bactericidal toward OSSA. Conversely, the associations between plant product (CLE, EtOAc, or HX) and OXA exhibited no synergistic effects. During these associations, there was an increase in OXA MICs anywhere from 2- to 4092-fold. The CLE presented absence of toxicity at a dose of 5 g kg-1 (in vivo). Conclusion: Although T. paniculatum be a good source of bioactive compounds with antistaphylococcal potential, the researchers should be cautious, since its edible leaf may interfere with OXA therapy (mitigating OXA-induced growth inhibition or killing of S. aureus and enhancing S. aureus resistance).

Propósito: evaluamos el potencial antibacteriano del extracto de hoja en bruto (EHB) y las fracciones hexano (HX) y acetato de etilo (AcOEt) de Talinum paniculatum solo y en asociación con oxacilina (OXA) contra Staphylococcus aureus resistente a OXA (ORSA, ambientales) y S. aureus sensible a OXA (OSSA, ATCC 25923). Además, se realizaron pruebas de toxicidad. Métodos: la actividad antibacteriana se evaluó mediante microdilución en caldo para establecer las concentraciones inhibitorias mínimas (CIM) y bactericidas mínimas (CBM). Se evaluó la toxicidad en ratones. Resultados: los valores de CIM para el EHB y sus fracciones contra ORSA y OSSA fueron del orden de HX (500 μg ml–1) = AcOEt < EHB (4000 μg ml–1). AcOEt y HX presentaron actividades antibacterianas sobresalientes contra ORSA, y estas fracciones fueron bactericidas hacia OSSA. Por el contrario, las asociaciones entre el producto vegetal (EHB, AcOEt o HX) y OXA no mostraron efectos sinérgicos. Durante estas asociaciones, hubo un aumento en las CIM de OXA de 2 a 4092 veces. EHB no mostró toxicidad a una dosis de 5 g kg–1. Conclusión: aunque T. paniculatum es una buena fuente de compuestos bioactivos con potencial antiestofilocócico, los investigadores deben ser cautelosos, ya que su hoja comestible puede interferir con la terapia con OXA (mitigando la inhibición del crecimiento inducida por OXA o la muerte de S. aureus y promoviendo resistencia bacteriana).

Referencias

A. Jousselin, W.L. Kelley, C. Barras, et al., The Staphylococcus aureus thiol/oxidative stress global regulator Spx controls trfA, a gene implicated in cell wall antibiotic resistance, Antimicrob. Agents Chemother., 57, 3283-3292 (2013).

IOM (Institute of Medicine), Antibiotic resistance: Implications for global health and novel intervention strategies, The National Academies Press, Washington, D.C., 2010.

J.E.C. Betoni, R.P. Mantovani, L.N. Barbosa, et al., Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases, Mem. Inst. Oswaldo Cruz, 101, 387-390 (2006).

Centers for Disease Control and Prevention (CDC), Antibiotic Resistant Threats in the United States, U.S. Department of Health and Human Services, Atlanta, GA, 2013, p. 114.

E.D. Brown, Is the GAIN Act a turning point in new antibiotic discovery? Can. J. Microbiol., 59, 153-156 (2013).

H. Peng, C. Li, S. Kadow, et al., Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis, J. Mol. Med. (Berlin), 93, 675-689 (2015).

L.F. Reis, C.D. Cerdeira, B.F. Paula, et al., Chemical characterization and evaluation of antibacterial, antifungal, antimycobacterial, and cytotoxic activities of Talinum paniculatum, Rev. Inst. Med. Trop. Sao Paulo, 57, 397-405 (2015).

N. Gallucci, M. Oliva, E. Carezzano, et al., Terpenes antimicrobial activity against slime producing and non-producing staphylococci, Mol. Med. Chem., 21, 132-136 (2010).

J. Nadarajah, M.J. Lee, L. Louie, et al., Identification of different clonal complexes and diverse amino acid substitutions in penicillin-binding protein 2 (PBP2) associated with borderline oxacillin resistance in Canadian Staphylococcus aureus isolates, J. Med. Microbiol., 55, 1675-1678 (2006).

A. Shirwaikar, R. Govindarajan, A.K.S. Rawat, Integrating complementary and alternative medicine with primary health care, Evid. Based Complement. Alternat. Med., 2013, Article ID 948308, 3 (2013).

Z. Meng, C. Sop, Y. Xuefu, et al., Characteristics of baicalin synergy with penicillin or notopterygium ethanol extracts against Staphylococcus aureus, Tsinghua Sci. Technol., 11, 459-461 (2006).

J. Caribe, J.M. Campos, Plantas que ajudam o homem: guia prático para época, Cultrix/Pensamento, São Paulo, 1991.

C. Thanamool, P. Papirom, S. Chanlun, et al., Talinum paniculatum (Jacq.) Gertn: a medicinal plant with potential estrogenic activity in ovariectomized rats, Int. J. Pharm. Pharm. Sci., 5, 478-485 (2013).

C. Thanamool, A. Thaeomor, S. Chanlun, et al., Evaluating the anti-fertility activity of Talinum paniculatum (Jacq.) Gaertnin female Wistar rats, Aust. J. Plant Physiol., 7, 1802–1807 (2013).

M.P.O. Ramos, G.D.F. Silva, L.P. Duarte, et al. Antinociceptive and edematogenic activity and chemical constituents of Talinum paniculatum willd, J. Chem. Pharm. Res., 2, 265-274 (2010).

C. Sukwan, S. Wray, S. Kupittayanant, The effects of Ginseng Java root extract on uterine contractility in nonpregnant rats, Physiol. Rep., 2, e12230 (2014).

H. Shimoda, N. Nishida, K. Ninomiya, et al., Javaberine A, new TNF-alpha and nitric oxide production inhibitor, from the roots of Talinum paniculatum, Heterocycles, 55, 2043-2050 (2001).

T.V. Chittezham, L.C. Kinkead, A. Janssen, et al., A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during β-lactam stress, mBio, 4, e00437-13 (2013).

A. Krawczyk-Balska, J. Marchlewicz, D. Dudek, et al., Identification of a ferritin-like protein of Listeria monocytogenesis a mediator of β-lactam tolerance and innate resistance to Cephalosporins, BMC Microbiol., 12, 278 (2012).

Y. Liu, X. Liu, Y. Qu, et al., Inhibitors of reactive oxygen species accumulation delay and/or reduce the lethality of several antistaphylococcal agents, Antimicrob. Agents Chemother., 56, 6048-6050 (2012).

R. Pechous, N. Ledala, B.J. Wilkinson, et al., Regulation of the expression of cell wall stress stimulon member gene msra1 in methicillin-susceptible or -resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 48, 3057-3063 (2004).

K. Singh, V.K. Singh, Expression of four methionine sulfoxide reductases in Staphylococcus aureus, Int. J. Microbiol., 2012, Article ID 719594, 8 (2012).

K. Poole. Bacterial stress responses as determinants of antimicrobial resistance, J. Antimicrob. Chemother., 67, 2069-2089 (2012).

P. Belenky, J.D. Ye, C.B.M. Porter, et al., Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage, Cell Rep., 13, 968-980 (2015).

K. W. Bayles, The biological role of death and lysis in biofilm development, Nat. Rev. Microbiol., 5, 721-726 (2007).

T. Uehara, T. Dinh, T.G. Bernhardt, LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli, J. Bacteriol., 191, 5094-5107 (2009).

D. Nguyen, A. Joshi-Datar, F. Lepine, et al., Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria, Science, 334, 982-986 (2011).

M. Goswami, S.H. Mangoli, N. Jawal, Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli, Antimicrob. Agents Chemother., 50, 949-954 (2006).

D.J. Dwyer, P.A. Belenky, J.H. Yang, et al., Antibiotics induce redox-related physiological alterations as part of their lethality, Proc. Natl. Acad. Sci. USA, 111, E2100-E2109 (2014).

I. Keren, Y. Wu, J. Inocencio, et al., Killing by bactericidal antibiotics does not depend on reactive oxygen species, Science, 339, 1213-1216 (2013).

M. Goswami, S.H. Mangoli, N. Jawali, Antibiotics and antioxidants: Friends or foes during therapy? BARC Newsletter, 32, 42-46 (2011).

I. Albesa, M.C. Becerra, P.C. Battan, et al., Oxidative stress involved in the antibacterial action of different antibiotics, Biochem. Biophys. Res. Commun., 317, 605-609 (2004).

S.S. Grant, D.T. Hung, Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response, Virulence, 4, 273-283 (2013).

World Health Organization (WHO), Quality control methods for medicinal plant materials, Geneva, 1998.

J. Meng, G. He, H. Wang, et al., Reversion of antibiotic resistance by inhibiting mecA in clinical methicillin-resistant Staphylococci by antisense phosphorothioate oligonucleotide, J. Antibiot. (Tokyo), 68, 158-164 (2015).

Clinical and Laboratory Standards Institute (CLSI), Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved standard M7-A6, 6th ed., CLSI, Wayne, 2003.

B.F. Paula, L.F.C. Reis, C.D. Cerdeira, et al., Pharmacological evaluation of the anti-inflammatory and antinociceptive effects of the hydroethanolic extract of the leaves of Raphanus sativus (L.) var. oleifera metzg in mice, J. Pharm. Biol., 6, 27-33 (2016).

F.C. Odds, Synergy, antagonism, and what the chequerboard puts between them, J. Antimicrob. Chemother., 52, 1 (2003).

J. Meletiadis, S. Pournaras, E. Roilides, et al., Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro -in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus, Antimicrob. Agents Chemother., 54, 602-609 (2010).

K. Konaté, J.F. Mavoungou, A.N. Lepengué, et al., Antibacterial activity against β-lactamase producing methicillin and ampicillin-resistants Staphylococcus aureus: fractional Inhibitory Concentration Index (FICI) determination, Ann. Clin. Microbiol. Antimicrob., 11, 18 (2012).

J. Nadarajah, M.J. Lee, L. Louie, et al., Identification of different clonal complexes and diverse amino acid substitutions in penicillin-binding protein 2 (PBP2) associated with borderline oxacillin resistance in Canadian Staphylococcus aureus isolates, J. Med. Microbiol., 55, 1675-1683 (2006).

S. Petti, A. Polimeni, Risk of methicillin-resistant Staphylococcus aureus transmission in the dental healthcare setting: a narrative review, Infect. Control Hosp. Epidemiol., 32, 1109-1115 (2011).

M.M. Cowan, Plant products as antimicrobial agents, Clin. Microbiol. Rev., 12, 564-582 (1999).

L.J. Bessa, A. Palmeira, A.S. Gomes, et al., Synergistic effects between thioxanthones and oxacillin against methicillin-resistant Staphylococcus aureus, Microb. Drug Resist. (Larchmont, N.Y.), 21, 404-415 (2015).

S. Hemaiswarya, A.K. Kruthiventi, M. Doble. Synergism between natural products and antibiotics against infectious diseases, Phytomedicine, 15, 639-652 (2008).

R. Londonkar, H.B. Nayaka, Phytochemical and antimicrobial activities of Portulaca oleracea L., J. Pharm. Res., 4, 3553 (2011).

N. Savithramma, S. Ankanna, M.L. Rao, et al., Studies on antimicrobial efficacy of medicinal tuberous shrub Talinum cuneifolium, J. Environ. Biol., 33, 775-780 (2012).

Y. Han, Synergic anticandidal effect of epigallocatechin-O-gallate combined with amphotericin B in a Murine model of disseminated Candidiasis and its anticandidal mechanism, Biol. Pharm. Bull., 30, 1693-1696 (2007).

T. Inui, Y. Wang, S. Deng, et al., Counter-current chromatography-based analysis of synergy in an anti-tuberculosis ethnobotanical, J. Chromatogr. A, 1151, 211-215 (2007).

L. Sun, S. Sun, A. Cheng, et al., In vitro activities of retigeric acid B alone and in combination with azole antifungal agents against Candida albicans, Antimicrob. Agents Chemother., 53, 1586-1591 (2009).

M.S.A. Khan, I. Ahmad, Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms, J. Antimicrob. Chemother., 67, 618-621 (2012).

G. Smirnova, Z. Samoilova, N. Muzyka, et al., Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of Escherichia coli, J. Appl. Microbiol., 113, 192-199 (2012).

M.P. Brynildsen, J.A. Winkler, C.S. Spina, et al., Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production, Nature Biotechnol., 31, 160-165 (2013).

R.M. Perera, N. Bardeesy, When antioxidants are bad, Nature, 475, 43-44 (2011).

M.C. Becerra, I. Albesa, Oxidative stress induced by ciprofloxacin in Staphylococcus aureus, Biochem. Biophys. Res. Commun., 297, 1003-1007 (2002).

D.J. Dwyer, M.A. Kohanski, J.J. Collins, Role of reactive oxygen species in antibiotic action and resistance, Curr. Opin. Microbiol., 12, 482-489 (2009).

D.J. Dwyer, J.J. Collins, G.C. Walker, Unraveling the physiological complexities of antibiotic lethality, Annu. Rev. Pharmacol. Toxicol., 55, 313-332 (2015).

R. Gaupp, N. Ledala, G.A. Somerville, Staphylococcal response to oxidative stress, Front. Cell. Infect. Microbiol., 2, 1-19 (2012).

H. Van Acker, T. Coenye, The role of reactive oxygen species in antibiotic-mediated killing of bacteria, Trends Microbiol., 25, 456-466 (2017).

M.A. Kohanski, D.J. Dwyer, B. Hayete, et al., A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 130, 797-810 (2007).

B. Balasubramanian, W.K. Pogozelski, T.D. Tullius, DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone, Proc. Natl. Acad. Sci. USA, 95, 9738-9743 (1998).

X. Wang, X. Zhao, Contribution of oxidative damage to antimicrobial lethality, Antimicrob. Agents Chemother., 53, 1395-1402 (2009).

T.R. Sampson, X. Liu, M.R. Schroeder, et al., Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway, Antimicrob. Agents Chemother., 56, 5642-5649 (2012).

S.S. Grant, B.B. Kaufmann, N.S. Chand, et al., Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals, Proc. Natl. Acad. Sci. USA, 109, 12147-12152 (2012).

J.J. Foti, B. Devadoss, J.A. Winkler, et al., Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics, Science, 336, 315-319 (2012).

Cómo citar

APA

Cerdeira, C. D., da Silva, J. J., R. Netto, M. F., G. Boriollo, M. F., Santos, G. B., C. dos Reis, L. F. y P. L. Brigagão, M. R. (2020). Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(2). https://doi.org/10.15446/rcciquifa.v49n2.89894

ACM

[1]
Cerdeira, C.D., da Silva, J.J., R. Netto, M.F., G. Boriollo, M.F., Santos, G.B., C. dos Reis, L.F. y P. L. Brigagão, M.R. 2020. Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action. Revista Colombiana de Ciencias Químico-Farmacéuticas. 49, 2 (may 2020). DOI:https://doi.org/10.15446/rcciquifa.v49n2.89894.

ACS

(1)
Cerdeira, C. D.; da Silva, J. J.; R. Netto, M. F.; G. Boriollo, M. F.; Santos, G. B.; C. dos Reis, L. F.; P. L. Brigagão, M. R. Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action. Rev. Colomb. Cienc. Quím. Farm. 2020, 49.

ABNT

CERDEIRA, C. D.; DA SILVA, J. J.; R. NETTO, M. F.; G. BORIOLLO, M. F.; SANTOS, G. B.; C. DOS REIS, L. F.; P. L. BRIGAGÃO, M. R. Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 49, n. 2, 2020. DOI: 10.15446/rcciquifa.v49n2.89894. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/89894. Acesso em: 14 ago. 2024.

Chicago

Cerdeira, Cláudio Daniel, Jeferson J. da Silva, Manoel F. R. Netto, Marcelo F. G. Boriollo, Gérsika B. Santos, Luis F. C. dos Reis, y Maísa R. P. L. Brigagão. 2020. «Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action». Revista Colombiana De Ciencias Químico-Farmacéuticas 49 (2). https://doi.org/10.15446/rcciquifa.v49n2.89894.

Harvard

Cerdeira, C. D., da Silva, J. J., R. Netto, M. F., G. Boriollo, M. F., Santos, G. B., C. dos Reis, L. F. y P. L. Brigagão, M. R. (2020) «Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action», Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(2). doi: 10.15446/rcciquifa.v49n2.89894.

IEEE

[1]
C. D. Cerdeira, «Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action», Rev. Colomb. Cienc. Quím. Farm., vol. 49, n.º 2, may 2020.

MLA

Cerdeira, C. D., J. J. da Silva, M. F. R. Netto, M. F. G. Boriollo, G. B. Santos, L. F. C. dos Reis, y M. R. P. L. Brigagão. «Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 49, n.º 2, mayo de 2020, doi:10.15446/rcciquifa.v49n2.89894.

Turabian

Cerdeira, Cláudio Daniel, Jeferson J. da Silva, Manoel F. R. Netto, Marcelo F. G. Boriollo, Gérsika B. Santos, Luis F. C. dos Reis, y Maísa R. P. L. Brigagão. «Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action». Revista Colombiana de Ciencias Químico-Farmacéuticas 49, no. 2 (mayo 1, 2020). Accedido agosto 14, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/89894.

Vancouver

1.
Cerdeira CD, da Silva JJ, R. Netto MF, G. Boriollo MF, Santos GB, C. dos Reis LF, P. L. Brigagão MR. Talinum paniculatum leaves with in vitro antimicrobial activity against reference and clinical strains of Staphylococcus aureus interfere in oxacillin action. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 1 de mayo de 2020 [citado 14 de agosto de 2024];49(2). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/89894

Descargar cita

CrossRef Cited-by

CrossRef citations2

1. Cláudio Daniel Cerdeira, Maísa R. P. L. Brigagão. (2024). Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunological Investigations, , p.1. https://doi.org/10.1080/08820139.2024.2367682.

2. Marina Silalahi, Anisatu Z. Wakhidah. (2023). RETRACTED ARTICLE: The food plants trade in the Kranggan Mas traditional market, West Java Province, Indonesia: food security and local cuisine. Journal of Ethnic Foods, 10(1) https://doi.org/10.1186/s42779-023-00192-5.

Dimensions

PlumX

Visitas a la página del resumen del artículo

334

Descargas

Los datos de descargas todavía no están disponibles.