Publicado
Evaluation of eggshell membrane as an alternative biopolymeric matrix for delivery of nimesulide
Evaluación de la membrana de la cáscara de huevo como una matriz de biopolímero alternativa para la administración de nimesulida
Avaliação da membrana da casca do ovo como uma matriz biopolimérica alternativa para entrega de nimesulida
DOI:
https://doi.org/10.15446/rcciquifa.v50n2.91038Palabras clave:
nimesulide, biopolymer, cross-linking, release kinetics (en)nimesulida, biopolímero, reticulação, cinética de liberação (pt)
Descargas
Introduction: Eggshell membrane (ESM) is a tissue found between the eggshell and the albumen of eggs that has attractive properties for use in drug delivery systems. Aim: To incorporate in ESM and used it as a model drug in release studies. The color change and FTIR analysis of the biopolymer proved the incorporation of nimesulide in ESM. Results: The drug uptake was 176.83 and 122.69 mg g-1 by natural and cross-linked ESM. Release studies were carried out using a spectrophotometric flow system in simulated intestinal fluid pH 7.4. The release profiles showed that after 60 minutes 54.55 and 42.58 % of the drug were released from natural and cross-linked ESM, respectively. Kinetics parameters indicated that drug release was better described by the Higuchi model and through a non-Fickian release. Conclusion: Considering these results is proved that ESM has the potential to become a polymeric matrix for drug release systems.
Introducción: la membrana de cáscara de huevo (MCH) es un tejido que se encuentra entre la cáscara de huevo y la albúmina de los huevos que tiene propiedades atractivas para su uso en sistemas de administración de fármacos. Objetivo: incorporar en MCH y utilizarla como fármaco modelo en estudios de liberación. El cambio de color y el análisis FTIR del biopolímero demostraron la incorporación de nimesulida en MCH. Resultados: la captación del fármaco fue de 176,83 y 122,69 mg g-1 por MCH natural y reticulado. Los estudios de liberación se llevaron a cabo utilizando un sistema de flujo espectrofotométrico en líquido intestinal simulado pH 7,4. Los perfiles de liberación mostraron que después de 60 minutos el 54,55 y el 42,58 % del fármaco se liberó de la MCH natural y reticulada, respectivamente. Los parámetros cinéticos indicaron que la liberación del fármaco se describió mejor mediante el modelo de Higuchi y mediante una liberación no Fickian. Conclusión: de acuerdo con estos resultados, el MCH tiene el potencial de convertirse en una matriz polimérica para sistemas de liberación de fármacos.
Introdução: a membrana da casca do ovo (MCO) é um tecido encontrado entre a casca e o albúmen de ovos que possui propriedades atrativas para uso em sistemas de liberação de fármacos. Objetivo: incorporar à MCO e utilizá-la como fármaco modelo em estudos de liberação. Mudança de coloração e análises de FTIR do biopolímero comprovaram a incorporação da nimesulida na MCO. A incorporação do fármaco foi de 176,83 e 122,69 mg g-1 na MCO natural e reticulada, respectivamente. Resultados: os estudos de liberação foram realizados usando um sistema de fluxo espectrofotométrico em fluido intestinal simulado pH 7,4. Os perfis de liberação mostraram que após 60 minutos 54,55 e 42,58 % do medicamento foram liberados da MCO natural e reticulada, respectivamente. Os parâmetros cinéticos indicaram que a liberação do fármaco foi mais bem descrita pelo modelo de Higuchi e por meio de uma liberação não Fickiana. Conclusão: considerando estes resultados, fica comprovado que a MCO tem potencial para se tornar uma matriz polimérica para sistemas de liberação de fármacos.
Referencias
F.V.S. Rodrigues, L.S. Diniz, R.M.G. Sousa, T.D. Honorato, D.O. Simão, C.R.M. Araújo et al., Preparation and characterization of nanoemulsion containing a natural naphthoquinone, Química Nova, 41, 756-761 (2018).
H.P. Thakkar, J.L. Desai, Influence of excipients on drug absorption via modulation of intestinal transporters activity, Asian J. Pharm., 9, 69-82 (2015).
V.S.V. Priya, H.K. Roy, N. Jyothi, N.L. Prasanthi, Polymers in drug delivery technology, types of polymers and applications, Scholars Acad. J. Pharm., 5(7), 305-308 (2016).
L.M. Orozco-Castellanos, A. Marcos-Fernández, A.J. Alonso Castro, G. González-García, J.E. Báez-García, J.C. Rivera-Leyva, et al., Hydrocortisone release from tablets based on bioresorbable poly(ether-ester-urethane)s, Braz. J. Pharm. Sci., 53(1), e 16144 (2017).
H. Jia, K. Saito, W. Aw, S. Takahashi, M. Hanate, Y. Hasebe, et al., Transcriptional profiling in rats and an ex vivo analysis implicate novel beneficial function of eggshell membrane in liver fibrosis, J. Funct. Foods, 5(4), 1611-1619 (2013).
T.A.E. Ahmed, H.-P. Suso, M.T. Hincke, In-depth comparative analysis of the chicken eggshell membrane proteome, J. Proteom., 155, 49-62 (2017).
M.A. Al-Ghouti, M. Khan, Eggshell membrane as a novel bio sorbent for remediation of boron from desalinated water, J. Environ. Manag., 207, 405-416 (2018).
K.J. Ruff, J.R. Endres, A.E. Clewell, J.R. Szabo, A.G. Schauss, Safety evaluation of a natural eggshell membrane-derived product, Food Chem. Tox., 50, 604-611 (2012).
S.F. D'Souza, J. Kumar, S.K. Jha, B.S. Kubal, Immobilization of the urease on eggshell membrane and its application in biosensor, Mater. Sci. Eng. C., 33, 850-854 (2013).
P.G. Ray, S. Roy, Eggshell membrane: A natural substrate for immobilization and detection of DNA, Mater. Sci. Eng C., 59, 404-410 (2016).
Y. Yang, Y. Zhang, W.-J. Li, Y. Jiang, Z. Zhu, H. Hu, et al., Spectraplakin induces positive feedback between fusogens and the actin cytoskeleton to promote cell-cell fusion, Dev. Cell., 41, 107-120 (2017).
J. Li, D. Zhai, F. Lv, Q. Yu, H. Ma, J. Yin, et al., Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing, Acta Biomater., 36, 254-266 (2016).
M. Baláz, J. Ficeriová, J. Briancin, Influence of milling on the adsorption ability of eggshell waste, Chemosphere, 146, 458-471 (2016).
J. Chouler, I. Bentley, F. Vaza, A. O’Feea, P.J. Cameron, M.D. Lorenzo, Exploring the use of cost-effective membrane materials for microbial fuel cell-based sensors, Electrochim. Acta, 231, 319-326 (2017).
S.K. Karan, S. Maiti, S. Paria, A. Maitra, S.K. Si, J.K. Kim, New insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester, Mater. Today Energy, 9, 114-125 (2018).
J. Tang, J. Li, J. Kang, L. Zhong, Y. Zhang, Preliminary studies of application of eggshell membrane as immobilization platform in sandwich immunoassay, Sens. Actuators B Chem. , 140, 200-205 (2009).
G.H. Farjah, B. Heshmatian, M. Karimipour, A. Saberi, Using eggshell membrane as nerve guide channels in peripheral nerve regeneration, Iran. J. Basic Med. Sci., 16(8), 901-905 (2013).
S.A. A-Khan, M. Ahmad, M.N. Aamir, G. Murtaza, F. Rasool, M. Akhtar, Study of nimesulide release from ethylcellulose microparticles and drug-polymer compatibility analysis, Lat. Am. J. Pharm., 29(4), 554-561 (2010).
R.M. Shah, D.S. Eldridge, E.A. Palombo, I.H. Harding, Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs, Int. J. Pharm., 515, 543-554 (2016).
V. Krishnamoorthy, Suchandrasen, V.P.R. Prasad, Physicochemical characterization and in vitro dissolution behavior of olanzapine-mannitol solid dispersions, Braz. J. Pharm. Sci., 48(2), 243-255 (2012).
V.L. Gonçalves, M.C.M. Laranjeira, V.T. Fávere, R.C. Pedrosa, Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium, Polímeros: Ciência e Tecnologia, 15(1), 6-12 (2005).
T.-M. Wu, J.P. Rodriguez, D.J. Fink, D.A. Carrino, J. Blackwell, A.I. Capalan. et al., Crystallization studies on avian eggshell membranes: Implications for the molecular factors controlling eggshell formation, Matrix Biol., 14(6), 507-513 (1995).
M. Baláz, Eggshell membrane biomaterial as a platform for applications in materials science, Acta Biomater., 10, 3827-3843 (2014).
P. Sanphui, B. Sarma, A. Nangia, Phase transformation in conformational polymorphs of nimesulide, J. Pharm. Sci., 100, 2287-2299 (2011).
S.A. B-Khan, M. Ahmad, G. Murtaza, M.N. Aamir, N. Rehman, R. Kousar, et al., Formulation of nimesulide floating microparticles using low-viscosity hydroxypropyl methylcellulose, Trop. J. Pharm. Res., 9(3), 293-299 (2010).
M.N. Freitas, J.M. Marchetti, Nimesulide PLA microspheres as a potential sustained release system for the treatment of inflammatory diseases, Int. J. Pharm., 295, 201-211 (2005).
S.-O. Purcaru, M. Ionescu, C. Raneti, V. Anuta, I. Mircioiu, I. Belu, Study of nimesulide release from solid pharmaceutical formulations in tween 80 solutions, Curr. Health Sci. J., 36(1), 42-47 (2010).
E. Palazi, E. Karavas, P. Barmpalexis, M. Kostoglou, S. Nanaki, E. Christodoulou, et al., Melt extrusion process for adjusting drug release of poorly water-soluble drug felodipine using different polymer matrices, Eur. J. Pharm. Sci., 114: 332-345 (2018).
M.K. Raval, A.A. Bagda, J.M. Patel, J.S. Paun, K.R. Chaudhari, N.R. Sheth, Preparation and evaluation of sustained release nimesulide microspheres using response surface methodology, J. Pharm. Res., 3(3), 581-586 (2010).
G. Verma, M.K. Mishra, K. Nayak, Formulation and evaluation of nimesulide microspheres using different natural carriers, Eur. J. Biomed. Pharm. Sci., 4(1), 362-365 (2017).
N. Coceani, L. Magarotto, D. Ceschia, I. Colombo, M. Grassi, Theoretical and experimental analysis of drug release from an ensemble of polymeric particles containing amorphous and nano-crystalline drug, Chem. Eng. Sci., 71, 345-355 (2012).
Y. Yuan, C. Yinga, Z. Li, Z. Hui-ping, G. Yi-Sha, Z. Bo, et al., Thermosensitive and mucoadhesive in situ gel based on poloxamer as new carrier for rectal administration of nimesulide, Int. J. Pharm., 430, 114-119 (2012).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2021 Revista Colombiana de Ciencias Químico-Farmacéuticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13