Publicado

2020-11-03

Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases

Compuestos aislados de Bixa orellana: avances basados en la evidencia para tratar enfermedades infecciosas

DOI:

https://doi.org/10.15446/rcciquifa.v49n3.91247

Palabras clave:

Natural products, antimicrobial activity, human pathogens, phytochemical compounds (en)
Productos naturales, actividad antimicrobiana, patógenos humanos, compuestos fitoquímicos (es)

Descargas

Autores/as

  • Roberval Nascimento Moraes Neto Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão
  • Gabrielle Guedes Coutinho Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão
  • Aline de Oliveira Rezende Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão
  • Daniel de Brito Pontes Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão
  • Rayana Larissa Pinheiro Soares Ferreira Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhã
  • Danilo de Araújo Morais Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão
  • Rafaela Pontes Albuquerque Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão
  • Lídio Gonçalves Lima-Neto Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão
  • Luís Cláudio Nascimento da Silva Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão
  • Cláudia Quintino da Rocha Centro de Ciência e Tecnologia, Departamento de Química, Universidade Federal do Maranhão
  • Letícia Machado Gonçalves Programa de Pós-Graduação em Odontologia, Universidade CEUMA, Maranhão
  • Luís Ângelo Macedo Santiago Programa de Pósgraduação em Biodiversidade e Biotecnologia da Rede Bionorte, Maranhão
  • Renata Mondego-Oliveira Rede Nordeste de Biotecnologia, Programa, Universidade Federal do Maranhão, Maranhão
  • Rafael Cardoso Carvalho Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão
  • Eduardo Martins de Sousa Laboratório de Imunologia e Microbiologia das Infecções Respiratórias, Programa de Mestrado em Biologia Microbiana, Universidade CEUMA, Maranhão

Bixa orellana L. is a native plant from Brazil, but it is also present in other tropical countries such as Peru, Colombia, Ecuador, Mexico, Indonesia, India and East Africa. It is popularly known as Urucum in Brazil. This review shows the potential of bioactive compounds derived from B. orellana to treat infectious diseases due their antimicrobial and antioxidant properties. This plant is also related as an anti-inflammatory agent for treatment of pulmonary diseases, or even as eye drops for redness. Its leaves are used for treatment of snakebite, diarrhea, gonorrhea, hepatitis, gastritis, diuretic, antipyretic, and for skin disease. This popular knowledge has encouraged the identification of bioactive compounds in this plant. Compounds as β-cryptoxanthin, geranylgeraniol, lutein, procyanidin B2, procyanidin B3, ellagitannin isomer and ellagic acid deoxyhexose have been described. These compounds inhibited pathogenic microorganisms such as bacteria, fungi, protozoan and viruses. In addition, some compounds with anti-inflammatory and antioxidant activities were also described. In this sense, B. orellana is a promising source of compounds that could be applied in antimicrobial therapy. This review work may help in the understanding and incentive of new research for antimicrobial discoveries using different B. orellana compounds.

Bixa orellana L. es una planta nativa de Brasil, pero también está presente en otros países tropicales como Perú, Colombia, Ecuador, México, Indonesia, India y África Oriental. Es conocida popularmente como Urucum en Brasil. Esta revisión expone el potencial de los compuestos bioactivos derivados de B. orellana para tratar enfermedades debido a sus propiedades antimicrobianas y antioxidantes. Esta planta también está relacionada como un agente antiinflamatorio para el tratamiento de enfermedades pulmonares e incluso como gotas para los ojos para el enrojecimiento. Sus hojas se utilizan para el tratamiento de la mordedura de serpiente, diarrea, gonorrea, hepatitis, gastritis, diuréticos, antipiréticos y para enfermedades de la piel. Ese conocimiento popular ha fomentado la identificación de compuestos bioactivos en esa planta. Los compuestos β-criptoxantina, geranilgeraniol, luteína, procianidina B2, procianidina B3, isómero elagitanino y ácido elágico desoxihexosa inhibieron microorganismos patógenos como bacterias, hongos, protozoos y virus. En ese sentido, B. orellana es una fuente prometedora de compuestos que podrían aplicarse en la terapia antimicrobiana. Este trabajo de revisión puede ayudar a comprender e incentivar nuevas investigaciones para los descubrimientos de antimicrobianos que utilizan diferentes compuestos de B. orellana.

Referencias

M.E.A. Elias, G. Schroth, J.L.V. Macedo, M.S.S. Mota, S.A. D'Angelo, Mineral nutrition, growth and yields of annatto trees (Bixa orellana) in agroforestry on an Amazonian Ferralsol, Expl. Agric., 38(3), 277-289 (2002).

D. de Araujo-Vilar, M.S. de Araujo-Vilar, T.F.A. de Lima e Moura, et al., Traditional uses, chemical constituents, and biological activities of Bixa orellana L.: a review, ScientificWorldJournal, 2014, 857292 (2014).

A.L. Prada, A.P.R. Bitencourt, J.R.R. Amado, R.A.S. Cruz, J.C.T. Carvalho, C.P. Fernandes, Development and characterization of Cassia grandis and Bixa orellana nanoformulations, Curr. Top. Med. Chem., 16(18), 2057-2065 (2016).

J. Revilla, Plantas da Amazônia: Oportunidades Econômicas e Sustentáveis, Programa de Desenvolvimento Empresarial e Tecnológico, Manaus, 2001.

D. Raddatz-Mota, L.J. Perez-Flores, F. Carrari, J.A. Mendoza-Espinoza, F. de Leon-Sanchez, L.L. Pinzon-Lopez, G. Godoy-Hernandez, F. Rivera-Cabrera, Achiote (Bixa orellana L.): a natural source of pigment and vitamin E, J. Food Sci. Technol., 54(6), 1729-1741 (2017).

F. Oliveira, G. Akisue, M.K. Akisue, Farmacognosia, Atheneu, São Paulo, 1991.

A.R.R. Bastos, J.G. Carvalho, R.P. Assis, A.B.C. Filho, Marcha de absorção de nutrientes em urucum (Bixa orellana L.) tipo cultivado piave vermelha em fase de viveiro, Cerne, 5, 76-85 (1999).

G. Dequigiovanni, S.L.F. Ramos, A. Alves-Pereira, E.G. Fabri, D. Picanco-Rodrigues, C.R. Clement, P. Gepts, E.A. Veasey, Highly structured genetic diversity of Bixa orellana var. urucurana, the wild ancestor of annatto, in Brazilian Amazonia, PLoS One, 13(6), e0198593 (2018).

R.P. Louro, L.J. Santiago, Development of carotenoid storage cells in Bixa orellana L. seed arils, Protoplasma, 253(1), 77-86 (2016).

R. Otero, R. Fonnegra, S.L. Jimenez, et al., Snakebites and ethnobotany in the northwest region of Colombia: Part I: traditional use of plants, J. Ethnopharmacol., 71(3), 493-504 (2000).

A. Caceres, H. Menendez, E. Mendez, et al., Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases, J. Ethnopharmacol., 48(2), 85-88 (1995).

D.L. Lentz, A.M. Clark, C.D. Hufford, et al., Antimicrobial properties of Honduran medicinal plants, J. Ethnopharmacol., 63(3), 253-263 (1998).

V. Galindo-Cuspinera, S.A. Rankin, Bioautography and chemical characterization of antimicrobial compound(s) in commercial water-soluble annatto extracts, J. Agric. Food Chem., 53(7), 2524-2529 (2005).

S.J. Martin, S.E. Evan, Comparative modulation of levels of oxidative stress in the liver of anti-tuberculosis drug treated Wistar rats by vitamin B12, beta-carotene, and Spirulina fusiformis: Role of NF-B, iNOS, IL-6, and IL-10, J. Cell. Biochem., 118(11), 3825-3833 (2017).

J.A. Findlay, A.D. Patil, Antibacterial constituents of the diatom Navicula delognei, J. Nat. Prod., 47(5), 815-818 (1984).

A. Vik, A. James, L.L. Gundersen, Screening of terpenes and derivatives for antimycobacterial activity: identification of geranylgeraniol and geranylgeranyl acetate as potent inhibitors of Mycobacterium tuberculosis in vitro, Planta Med., 73(13), 1410-1412 (2007).

B. Liu, Z. Teng, J. Wang, G. Lu, X. Deng, L. Li, Inhibition of listeriolysin O oligomerization by lutein prevents Listeria monocytogenes infection, Fitoterapia, 116, 45-50 (2017).

B. Gökalsin, B. Aksoydan, B. Erman, N.C. Sesal, Reducing virulence and biofilm of Pseudomonas aeruginosa by potential quorum sensing inhibitor carotenoid: Zeaxanthin, Microb. Ecol., 74(2), 466-473 (2017).

J. Lima-Viana, A. Zagmignan, L.F. Lima-Lobato, et al., Hydroalcoholic extract and ethyl acetate fraction of Bixa orellana leaves decrease the inflammatory response to Mycobacterium abscessus Subsp. massiliense, Evid. Based Complement. Alternat. Med., 2018, 6091934 (2018).

L. Monzote, M. Garcia, R. Scull, A. Cuellar, W.N. Setzer, Antileishmanial activity of the essential oil from Bixa orellana, Phytother. Res., 28(5), 753-758 (2014).

M. Garcia, L. Monzote, A.M. Montalvo-Alvarez, R. Scull-Lizama, Effect of Bixa orellana against Leishmania amazonensis, Forschende Komplementärmedizin, 18(6), 351-353 (2011).

M.V. Lopes, V.C. Desoti, O. Caleare-Ade, T. Ueda-Nakamura, S.O. Silva, C.V. Nakamura, Mitochondria superoxide anion production contributes to geranylgeraniol-induced death in Leishmania amazonensis, Evid. Based Complement. Alternat. Med., 2012, 298320 (2012).

E. Pierpaoli, F. Orlando, O. Cirioni, O. Simonetti, A. Giacometti, M. Provinciali, Supplementation with tocotrienols from Bixa orellana improves the in vivo efficacy of daptomycin against methicillin-resistant Staphylococcus aureus in a mouse model of infected wound, Phytomedicine, 36, 50-53 (2017).

J.J. Rojas, V.J. Ochoa, S.A. Ocampo, J.F. Munoz, Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections, BMC Complement. Altern. Med., 2006, 6, 2 (2006).

V. Galindo-Cuspinera, D.C. Westhoff, S.A. Rankin, Antimicrobial properties of commercial annatto extracts against selected pathogenic, lactic acid, and spoilage microorganisms, J. Food Prot., 66(6), 1074-1078 (2003).

O.A. Oyedeji, B.A. Adeniyi, O. Ajayi, W.A. Konig, Essential oil composition of Piper guineense and its antimicrobial activity. Another chemotype from Nigeria, Phytother. Res., 19(4), 362-364 (2005).

T.C. Fleischer, E.P. Ameade, M.L. Mensah, I.K. Sawer, Antimicrobial activity of the leaves and seeds of Bixa orellana, Fitoterapia, 74(1-2), 136-138 (2003).

T.V. Cuong, K.B. Chin, Effects of annatto (Bixa orellana L.) seeds powder on physicochemical properties, antioxidant and antimicrobial activities of pork patties during refrigerated storage, Korean J. Food Sci. Anim. Resour., 36(4), 476-486 (2016).

M.T. Montero, J. Matilla, E. Gomez-Mampaso, M.A. Lasuncion, Geranylgeraniol regulates negatively caspase-1 autoprocessing: implication in the Th1 response against Mycobacterium tuberculosis, J. Immunol., 173(8), 4936-4944 (2004).

J. Schmuch, B. Beckert, S. Brandt, G. Lohr, F. Hermann, T.J. Schmidt, T. Beikler, A. Hensel, Extract from Rumex acetosa L. for prophylaxis of periodontitis: inhibition of bacterial in vitro adhesion and of gingipains of Porphyromonas gingivalis by epicatechin-3-O-(48)-epicatechin-3-O-gallate (procyanidin-B2-di-gallate), PLoS One, 10(3), e0120130 (2015).

S.P. Voravuthikunchai, S. Suwalak, W. Mitranan, Ellagitannin from Quercus infectoria eradicates intestinal colonization and prevents renal injuries in mice infected with Escherichia coli O157:H7, J. Med. Microbiol., 61(10), 1366-1372 (2012).

D.D. Raga, R.A. Espiritu, C.C. Shen, C.Y. Ragasa, A bioactive sesquiterpene from Bixa orellana, J. Nat. Med., 65(1), 206-211 (2011).

C.Y. Ragasa, A.L. Co, J.A. Rideout, Antifungal metabolites from Blumea balsamifera, Nat. Prod. Res., 19(3), 231-237 (2005).

Z.F. Yang, L.P. Bai, W.B. Huang, X.Z. Li, S.S. Zhao, N.S. Zhong, Z.H. Jiang, Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis, Fitoterapia, 93, 47-53 (2014).

D. Liu, J. Deng, S. Joshi, P. Liu, C. Zhang, Y. Yu, R. Zhang, D. Fan, H. Yang, D.H. D'Souza, Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions, Food Microbiol., 76, 346-353 (2018).

R. Pang, J.Y. Tao, S.L. Zhang, et al., In vitro antiviral activity of lutein against hepatitis B virus, Phytother. Res., 24(11), 1627-1630 (2010).

Y. Yoke-Keong, A.K. Arifah, S. Sukardi, A.H. Roslida, M.N. Somchit, A. Zuraini, Bixa orellana leaves extract inhibits bradykinin-induced inflammation through suppression of nitric oxide production, Med. Princ. Pract., 20(2), 142-146 (2011).

S.J. Stohs, Safety and efficacy of Bixa orellana (achiote, annatto) leaf extracts, Phytother. Res., 28(7), 956-960 (2014).

O.A. Conrad, I.P. Dike, U. Agbara, In vivo antioxidant assessment of two antimalarial plants-Allamamda cathartica and Bixa orellana, Asian Pac. J. Trop. Biomed., 3(5), 388-394 (2013).

Y.K. Yong, Z.A. Zakaria, A.A. Kadir, M.N. Somchit, G.E. Cheng-Lian, Z. Ahmad, Chemical constituents and antihistamine activity of Bixa orellana leaf extract, BMC Complement. Altern. Med., 13, 32 (2013).

K. Nagahama, N. Eto, T. Shimojo, T. Kondoh, K. Nakahara, Y. Sakakibara, K. Fukui, M. Suiko, Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo, Biosci. Biotechnol. Biochem., 79(8), 1327-1336 (2015).

R. Terao, A. Murata, K. Sugamoto, et al., Immunostimulatory effect of kumquat (Fortunella crassifolia) and its constituents, beta-cryptoxanthin and R-limonene, Food Funct., 10(1), 38-48 (2019).

S. Ghodratizadeh, G. Kanbak, M. Beyramzadeh, Z.G. Dikmen, S. Memarzadeh, R. Habibian, Effect of carotenoid beta-cryptoxanthin on cellular and humoral immune response in rabbit, Vet. Res. Commun., 38(1), 59-62 (2014).

Y. Ni, F. Zhuge, M. Nagashimada, T. Ota, Novel action of carotenoids on non-alcoholic fatty liver disease: macrophage polarization and liver homeostasis, Nutrients, 8(7), 391 (2016).

K. Unno, S. Noda, Y. Kawasaki, K. Iguchi, H. Yamada, Possible gender difference in anti-stress effect of beta-cryptoxanthin, Yakugaku Zasshi, 136(9), 1255-1262 (2016).

K. Unno, S. Noda, H. Nii, Y. Kawasaki, K. Iguchi, H. Yamada, Anti-stress effect of beta-cryptoxanthin in satsuma mandarin orange on females, Biol. Pharm. Bull., 42(8), 1402-1408 (2019).

K. Unno, M. Sugiura, K. Ogawa, et al., Beta-cryptoxanthin, plentiful in Japanese mandarin orange, prevents age-related cognitive dysfunction and oxidative damage in senescence-accelerated mouse brain, Biol. Pharm. Bull., 34(3), 311-317 (2011).

B.J. Burri, M.R. La Frano, C. Zhu, Absorption, metabolism, and functions of beta-cryptoxanthin, Nutr. Rev., 74(2), 69-82 (2016).

B. Atlı, M. Yamaç, Z. Yıldız, O.S. Isikhuemnen, Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation, Rev. Iberoam. Micolog., 32(4), 247-251 (2015).

J.S. Park, K.S. Cha, H.W. Lee, et al., Predictive and protective role of high-density lipoprotein cholesterol in acute myocardial infarction, Cardiol. J., 26(2), 176-185 (2019).

M. Kobori, Y. Ni, Y. Takahashi, et al., Beta-cryptoxanthin alleviates diet-induced nonalcoholic steatohepatitis by suppressing inflammatory gene expression in mice, PLoS One, 9(5), e98294 (2014).

P.E. Giriwono, H. Shirakawa, Y. Ohsaki, et al., Dietary supplementation with geranylgeraniol suppresses lipopolysaccharide-induced inflammation via inhibition of nuclear factor-B activation in rats, Eur. J. Nutr., 52(3), 1191-1199 (2013).

P.E. Giriwono, H. Shirakawa, Y. Ohsaki, et al., Geranylgeraniol suppresses the expression of IRAK1 and TRAF6 to inhibit NFB activation in lipopolysaccharide-induced inflammatory responses in human macrophage-like cells, Int. J. Mol. Sci., 20(9), 2320 (2019).

N.O. Calixto, M.C. da Costa e Silva, C.R. Gayer, M.G. Coelho, M.C. Paes, A. Todeschini, Antiplatelet activity of geranylgeraniol isolated from Pterodon pubescens fruit oil is mediated by inhibition of cyclooxygenase-1, Planta Med., 73(5), 480-483 (2007).

E.K. Silva, G.L. Zabot, M.A. Bargas, M.A.A. Meireles, Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization, Carbohydr. Polym., 152, 775-783 (2016).

Y. Karakurt, H. Suleyman, F. Keskin-Cimen, et al., The effects of lutein on optic nerve injury induced by ethambutol and isoniazid: an experimental study, Cutan. Ocul. Toxicol., 38(2), 136-140 (2019).

Y. Karakurt, T. Ucak, N. Tasli, et al., The effects of lutein on cisplatin-induced retinal injury: an experimental study, Cutan. Ocul. Toxicol., 37(4), 374-379 (2018).

E.L. Wils-Plotz, K.C. Klasing, Effects of immunomodulatory nutrients on growth performance and immune-related gene expression in layer chicks challenged with lipopolysaccharide, Poultry Sci., 96(3), 548-555 (2017).

A.N. Howard, D.I. Thurnham, Lutein and atherosclerosis: Belfast versus Toulouse revisited, Med. Hypotheses, 98, 63-68 (2017).

Z. Montero-Lobato, M. Vazquez, F. Navarro, et al., Chemically-induced production of anti-inflammatory molecules in microalgae, Mar. Drugs, 16(12), 478 (2018).

D. Tan, X. Yu, M. Chen, J. Chen, J. Xu, Lutein protects against severe traumatic brain injury through antiinflammation and antioxidative effects via ICAM1/Nrf2, Mol. Med. Rep., 16(4), 4235-4240 (2017).

K.J. Chung, J.K. Lee, S.C. Lee, J.W. Park, D.J. Seo, A new method for producing pravastatin precursor, ml-236b. Google Patents, 1999.

M.L. Moraes, A.M. Ribeiro, E. Santin, K.C. Klasing, Effects of conjugated linoleic acid and lutein on the growth performance and immune response of broiler chickens, Poultry Sci., 95(2), 237-246 (2016).

H. Su, Y. Li, D. Hu, L. Xie, H. Ke, X. Zheng, W. Chen, Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state, Free Radic. Biol. Med., 126, 269-286 (2018).

T.C. Sutcliffe, A.N. Winter, N.C. Punessen, D.A. Linseman, Procyanidin B2 protects neurons from oxidative, nitrosative, and excitotoxic stress, Antioxidants (Basel), 6(4), 77 (2017).

Cómo citar

APA

Moraes Neto, R. N., Guedes Coutinho, G. ., de Oliveira Rezende, A. ., de Brito Pontes, D. ., Pinheiro Soares Ferreira, R. L., de Araújo Morais, D., Pontes Albuquerque, R. ., Lima-Neto, L. G. ., Nascimento da Silva, L. C. ., Quintino da Rocha, C. ., Machado Gonçalves, L. ., Macedo Santiago, L. Ângelo ., Mondego-Oliveira , R. ., Cardoso Carvalho, R. . y Martins de Sousa, E. . (2020). Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(3). https://doi.org/10.15446/rcciquifa.v49n3.91247

ACM

[1]
Moraes Neto, R.N., Guedes Coutinho, G. , de Oliveira Rezende, A. , de Brito Pontes, D. , Pinheiro Soares Ferreira, R.L., de Araújo Morais, D., Pontes Albuquerque, R. , Lima-Neto, L.G. , Nascimento da Silva, L.C. , Quintino da Rocha, C. , Machado Gonçalves, L. , Macedo Santiago, L. Ângelo ., Mondego-Oliveira , R. , Cardoso Carvalho, R. y Martins de Sousa, E. 2020. Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases. Revista Colombiana de Ciencias Químico-Farmacéuticas. 49, 3 (nov. 2020). DOI:https://doi.org/10.15446/rcciquifa.v49n3.91247.

ACS

(1)
Moraes Neto, R. N.; Guedes Coutinho, G. .; de Oliveira Rezende, A. .; de Brito Pontes, D. .; Pinheiro Soares Ferreira, R. L.; de Araújo Morais, D.; Pontes Albuquerque, R. .; Lima-Neto, L. G. .; Nascimento da Silva, L. C. .; Quintino da Rocha, C. .; Machado Gonçalves, L. .; Macedo Santiago, L. Ângelo .; Mondego-Oliveira , R. .; Cardoso Carvalho, R. .; Martins de Sousa, E. . Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases. Rev. Colomb. Cienc. Quím. Farm. 2020, 49.

ABNT

MORAES NETO, R. N.; GUEDES COUTINHO, G. .; DE OLIVEIRA REZENDE, A. .; DE BRITO PONTES, D. .; PINHEIRO SOARES FERREIRA, R. L.; DE ARAÚJO MORAIS, D.; PONTES ALBUQUERQUE, R. .; LIMA-NETO, L. G. .; NASCIMENTO DA SILVA, L. C. .; QUINTINO DA ROCHA, C. .; MACHADO GONÇALVES, L. .; MACEDO SANTIAGO, L. Ângelo .; MONDEGO-OLIVEIRA , R. .; CARDOSO CARVALHO, R. .; MARTINS DE SOUSA, E. . Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 49, n. 3, 2020. DOI: 10.15446/rcciquifa.v49n3.91247. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/91247. Acesso em: 20 abr. 2025.

Chicago

Moraes Neto, Roberval Nascimento, Gabrielle Guedes Coutinho, Aline de Oliveira Rezende, Daniel de Brito Pontes, Rayana Larissa Pinheiro Soares Ferreira, Danilo de Araújo Morais, Rafaela Pontes Albuquerque, Lídio Gonçalves Lima-Neto, Luís Cláudio Nascimento da Silva, Cláudia Quintino da Rocha, Letícia Machado Gonçalves, Luís Ângelo Macedo Santiago, Renata Mondego-Oliveira, Rafael Cardoso Carvalho, y Eduardo Martins de Sousa. 2020. «Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases». Revista Colombiana De Ciencias Químico-Farmacéuticas 49 (3). https://doi.org/10.15446/rcciquifa.v49n3.91247.

Harvard

Moraes Neto, R. N., Guedes Coutinho, G. ., de Oliveira Rezende, A. ., de Brito Pontes, D. ., Pinheiro Soares Ferreira, R. L., de Araújo Morais, D., Pontes Albuquerque, R. ., Lima-Neto, L. G. ., Nascimento da Silva, L. C. ., Quintino da Rocha, C. ., Machado Gonçalves, L. ., Macedo Santiago, L. Ângelo ., Mondego-Oliveira , R. ., Cardoso Carvalho, R. . y Martins de Sousa, E. . (2020) «Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases», Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(3). doi: 10.15446/rcciquifa.v49n3.91247.

IEEE

[1]
R. N. Moraes Neto, «Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases», Rev. Colomb. Cienc. Quím. Farm., vol. 49, n.º 3, nov. 2020.

MLA

Moraes Neto, R. N., G. . Guedes Coutinho, A. . de Oliveira Rezende, D. . de Brito Pontes, R. L. Pinheiro Soares Ferreira, D. de Araújo Morais, R. . Pontes Albuquerque, L. G. . Lima-Neto, L. C. . Nascimento da Silva, C. . Quintino da Rocha, L. . Machado Gonçalves, L. Ângelo . Macedo Santiago, R. . Mondego-Oliveira, R. . Cardoso Carvalho, y E. . Martins de Sousa. «Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 49, n.º 3, noviembre de 2020, doi:10.15446/rcciquifa.v49n3.91247.

Turabian

Moraes Neto, Roberval Nascimento, Gabrielle Guedes Coutinho, Aline de Oliveira Rezende, Daniel de Brito Pontes, Rayana Larissa Pinheiro Soares Ferreira, Danilo de Araújo Morais, Rafaela Pontes Albuquerque, Lídio Gonçalves Lima-Neto, Luís Cláudio Nascimento da Silva, Cláudia Quintino da Rocha, Letícia Machado Gonçalves, Luís Ângelo Macedo Santiago, Renata Mondego-Oliveira, Rafael Cardoso Carvalho, y Eduardo Martins de Sousa. «Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases». Revista Colombiana de Ciencias Químico-Farmacéuticas 49, no. 3 (noviembre 3, 2020). Accedido abril 20, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/91247.

Vancouver

1.
Moraes Neto RN, Guedes Coutinho G, de Oliveira Rezende A, de Brito Pontes D, Pinheiro Soares Ferreira RL, de Araújo Morais D, Pontes Albuquerque R, Lima-Neto LG, Nascimento da Silva LC, Quintino da Rocha C, Machado Gonçalves L, Macedo Santiago L Ângelo, Mondego-Oliveira R, Cardoso Carvalho R, Martins de Sousa E. Compounds isolated from Bixa orellana: evidence-based advances to treat infectious diseases. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 3 de noviembre de 2020 [citado 20 de abril de 2025];49(3). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/91247

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Wenyi Zhou, Lei Zhao, Kai Wang, Catherine M. G. C. Renard, Carine Le Bourvellec, Zhuoyan Hu, Xuwei Liu. (2024). Plant leaf proanthocyanidins: from agricultural production by-products to potential bioactive molecules. Critical Reviews in Food Science and Nutrition, 64(32), p.11757. https://doi.org/10.1080/10408398.2023.2244079.

Dimensions

PlumX

Visitas a la página del resumen del artículo

602

Descargas

Los datos de descargas todavía no están disponibles.