Publicado
O estudo teórico do desempenho dos polímeros condutores dos corantes azoicos na detecção eletroquímica de indigo-carmim
The theoretical study of the function of conducting polymers of the azo-dyes in the electrochemical detection of indigo-carmine
DOI:
https://doi.org/10.15446/rcciquifa.v49n3.91338Palabras clave:
Polímeros condutores, sensores eletroquímicos, indigo-carmim, corantes alimentares, corantes azoicos, estado estacionário estável (pt)Conducting polymers, electrochemical sensors, indigo-carmine, food dyes, azo-dyes, stable steady-state (en)
Descargas
O desempenho dos polímeros condutores dos corantes azoicos durante a detecção eletroquímica de indigo-carmim foi investigado do ponto de vista teórico, sendo o modelo, correspondente ao caso, descrito e analisado mediante a teoria de estabilidade lineal e da análise de bifurcações. Foi mostrado que o sistema eletroanalítico depende fortemente do pH, pois as concentrações excessivas dos prótons levam à ineficiência eletroanalítica, haja vista o bloqueio dos centros ativos da reação. No entretanto, malgrado o supracitado, os polímeros dos corantes azoicos são modificadores eficientes para determinação do indigo-carmim. A possibilidade das instabilidades oscilatória e monotônica também foi verificada.
The function of the conducting polymers of azo-dyes during the indigo-carmine electrochemical detection has been investigated from the theoretical point of view. The correspondent model has been described and analyzed by means of linear stability theory and bifurcation analysis. It has been shown that the electroanalytical system depends strongly on pH, as the excessive protons concentrations drive the system to the electroanalytical inefficiency, as they block the reaction active sites. Nevertheless, despite of the mentioned, the azo-dyes conducting polymers are efficient modifiers for indigo-carmine electrochemical determination. The possibility of oscillatory and monotonic instabilities has also been verified.
Referencias
C.C. Vishvanatha, B. Kumara Swamy, K. Vasantakumar Pai, Electrochemical studies of dopamine, ascorbic acid and uric acid at lignin modified carbon paste electrode by cyclic voltammetry, J. Anal. Bioanal. Techn., 6, ID: 1000237 (2015).
M.A. Sheikh-Mohseni, S. Pirsa, Simultaneous determination of dopamine and acetaminophen by a carbon paste electrode doubly modified with poly (pyrrole) and CuO nanoparticles, Anal. Bioanal. Electrochem., 8, 777-789 (2016).
T. McQuade, A. Pullen, T.M. Swager, Conjugated polymer-based chemical sensor, Chem. Rev., 100, 2537-2574 (2000).
R. Singh., Prospects of organic conducting polymer modified electrodes: Enzymosensors, Int. J. Electrochem., 2012, ID: 502707 (2012).
A. Ramanavicius, A. Ramanaviciene, A. Malinauskas, Electrochemical sensors based on conducting polymer—polypyrrole, Electrochim. Acta, 51, 6025-6037 (2006).
National Library of Medicine, Indigo carmine, URL: https://pubchem.ncbi.nlm.nih.gov/compound/Indigo_carmine#section=Top, acesso aos 6 de julho de 2017.
Таблица пищевых Е-добавок, URL: http://dobavkam.net/additives/e132, acesso aos 6 de julho de 2017.
RxList, Indigo carmine, URL: http://www.rxlist.com/indigo-carmine-drug.htm, acesso aos 6 de julho de 2017.
Merck, Indigo carmine, URL: http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=TH&language=en&productNumber=131164&brand=SIAL&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsial%2F131164%3Flang%3Den, acesso aos 6 de julho de 2017.
FDA, Summary of color additives for use in the United States in Foods, Drugs, Cosmetics, and Medical Devices, URL: https://www.fda.gov/ForIndustry/ColorAdditives/ColorAdditiveInventories/ucm115641.htm, acesso aos 6 de julho de 2017.
Th. B. Zanoni, A.A. Cardoso, M.V. Baldrin et al., Exploratory study on sequestration of some essential metals by indigo carmine food dye, Braz. J. Pharm. Sci., 46, 723-730 (2010).
P.A. Pushpanjali, J.G. Manjunatha, C. Raril, D.K. Ravishankar, Determination of indigo carmine at poly(adenine) modified carbone nanotube paste electrode, Res. J. Life Sci. Bioinf. Pharm. Chem. Sci., 5, 820-832 (2019).
J.G.G. Manjunatha, A novel poly (glycine) biosensor towards the detection of indigo carmine: A voltammetric study, J. Food & Drug Anal., 26, 292-299 (2018).
L.F. Loguercio, P. Domingos, L. Manica et al., Simple one-step method to synthesize polypyrrole-indigo carmine-silver nanocomposite, J. Chemistry, 2016, ID: 5284259 (2016).
Drugs.com, Indigo carmine,https://www.drugs.com/pro/indigo-carmine.html, acesso aos 6 de julho de 2017.
Th. Bechtold, R. Mussak, Handbook of Natural Colorants, John Wiley and Sons, London (UK), 2009.
M.A. El Hamd, S.M. Deraya, O.S. Abdelmajeed, H.F. Askal, Spectrophotometric method for determination of five 1,4-dihydropyridine drugs using N-bromosuccinimide and indigo carmine dye, Int. J. Spectroscopy, 2013, ID: 243059 (2013).
K.G. Gilbert, H.G. Maule, B. Rudolph, Quantitative analysis of indigo and indigo precursors in leaves of Isatis Spp. and Polygonum tinctorium, Biotechnol. Prog., 20, 1289-1292 (2004).
M. Arvand, M. Saberi, M. Ardaki, A. Mohammadi, Mediated electrochemical method for the determination of indigo carmine levels in food products, Talanta, 173, 60-68 (2017).
S.U. Rahman, M.S. Ba-Shammakh, Thermal effects on the process of electropolymerization of pyrrole on mild steel, Synth. Met., 140, 207-210 (2004).
A.J. Pearlstein, J.A. Johnson, Global and conditional stability of the steady and periodic solutions of the Franck-FitzHugh model of electrodissolution of Fe in H2SO4, J. Electrochem. Soc., 136, 1290-1298 (1991).
I. Das, N.R. Agrawal, S.A. Ansari, S.K. Gupta, Pattern formation and oscillatory electropolymerization of thiophene, Indian J. Chem. A, 47, 1798-1803 (2008).
K. Aoki, I. Mukoyama, J. Chen, Polymerization and dissolution of polythiophene films, Russ. J. Electrochem., 40, 319-323 (2004).
M. Bazzaoui, E.A. Bazzaoui, L. Martins, J.I. Martins, Electropolymerization of pyrrole on zinc-lead-silver alloys electrodes in acidic and neutral organic media, Synth. Met., 130, 73-83 (2002).
V.V. Tkach, Ya. G. Ivanusko, S. M. Lukanova et al., 9-triphenylphosphazoacridine. Synthesis and modeling of electroanalytical action, Appl. J. Env. Eng. Sci., 3, 365-370 (2017).
V.V. Tkach, M.V. Kushnir, N.M. Storoshchuk et al., The theoretical description of cathodic deposition of new conducting polymer composite, assisted by a perrhenate of a novel triazolic derivative, Orbital Electr. J. Chem., 12, 34-38 (2020).
V.V. Tkach, M.V. Kushnir, Ya. G. Ivanushko et al., A descrição matemática do desempenho do novo derivado acridínico na detecção eletroanalítica do conteúdo total do ácido gálico em alfarroba, Rev. Colomb. Cienc. Quím. Farm., 47, 441-451 (2018).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13