Publicado
A descrição matemática da detecção eletroquímica dos alcaloides do grupo da insubosina, assistida pelos novos triazóis com e sem composto de ligação
The mathematical description for the electroanalytical detection of zinc ions in ophthalmic pharmaceutical forms, based on zinc complexation with some Schiff bases
DOI:
https://doi.org/10.15446/rcciquifa.v49n3.91339Palabras clave:
Zinco, elétrodos quimicamente modificados, bases de Schiff, complexos, eletropolimerização, estado estacionário estável (pt)Zinc, chemically modified electrodes, Schiff bases, complexes, electropolymerization, stable steady-state (en)
Descargas
Um processo eletroanalítico da detecção quantitativa dos íons de zinco bivalente sobre as novas bases de Schiff no modo galvanostático tem sido simulado teoricamente. O respectivo modelo matemático tem sido desenvolvido e analisado mediante a teoria de estabilidade linear e da análise de bifurcações. Foi estabelecido que o sistema é eficiente tanto do ponto de vista eletroanalítico, como do ponto de vista eletrossintético, por ser facilmente estabilizado o estado estacionário. Todavia, o comportamento oscilatório, neste sistema é mais provável que no caso clássico do desempenho de sensores, baseados em polímeros condutores e outros materiais orgânicos, por haver influências na dupla camada elétrica, causadas pela reação química da formação de complexo.
An electroanalytical process of the quantitative determination of bivalent zinc ions over the novel Schiff bases in galvanostatic mode has been theoretically simulated. The correspondent mathematical model has been developed and analyzed by means of linear stability theory and bifurcation analysis. It was shown that the system is efficient from both electroanalytical and electrosynthetical points of view, as the steady-state is easily stabilized. Nevertheless, the oscillatory behavior in this system is more probable than in the classic case of the sensors, based on conducting polymers and other organic materials, as there are double electric layer influences, caused by complex formation.
Referencias
S. Frassinetti, G. Bronzetti, L. Caltavuturo et al., The role of zinc in life: A review, J. Environm. Pathol. Toxicol. Oncol., 25, 597-610 (2006).
J. Osredkar, N. Sustar, Copper and zinc, biological role and significance of copper/zinc imbalance, J. Clin. Toxicol., S3, 001-1-18 (2011)
A. Krezel, W. Maret, The biological inorganic chemistry of zinc ions, Arch. Biochem. Biophys., 611, 3-19 (20106).
K. Kaur, R. Gupta, S.A. Saraf, S. K. Saraf, Zinc: The metal of life, Comprehensive Rev. Food Sci. Food Safety, 11, 358-376 (2014).
The Pharmaceutical Journal, Physiological and medicinal zinc, https://www.pharmaceutical-journal.com/cpd-and-learning/learning-article/physiological-and-medicinal-zinc/10997386.article?firstPass=false, acesso aos 3 de julho de 2020.
R. Vishvanatan, M. Chung, E. Johnson, A systematic review on zinc for the prevention and treatment of age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 54, 3985-3998 (2013).
N. Watt, I. Whitehouse, N. Hooper, Metals and Alzheimer’s disease, Int. J. Alzheimer Dis., 2011, ID: 971021 (2011).
K. Dodig-Curkovic, J. Dovhani, M. Curkovic et al., The role of zinc in the treatment of hyperactivity disorder in children, Acta Med. Croat., 63, 307-313 (2009).
K.Y. Djoko, Ch. Y. Ong, M.J. Walker, A.G. McEven, The role of copper and zinc toxicity in innate immune defense against bacterial pathogens, J. Biol. Chem., 290, 18954-18961 (2015).
J. Sheqwara, Y. Alkhatib, Sideroblastic anemia secondary to zinc toxicity, Blood, 122, 311 (2013)
Z. Koudelkova, T. Syrovy, P. Ambrozova et al., Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide, Sensors, 17, 1832-1850 (2017).
A. Lutka, Z. Kokot, H. Powidzka, Validation of electrochemical determination of zinc in selected pharmaceutical preparations, Acta Pol. Pharm., 61, 243-247 (2004).
J. Kudr, L. Richtera, L. Nejdl et al., Improved electrochemical detection of zinc ions using electrode modified with electrochemically reduced graphene oxide, Materials, 9, 31-1-12 (2016).
A. Lutka, H. Bukowska, Voltammetric Determination of zinc in compound pharmaceutical preparations--Validation of method, Acta Pol. Pharm., 66, 471-475 (2009).
K. Kiran, Spectrophotometric determination of zinc in water samples using 3-hydroxybenzylaminobenzoic acid, Chem. Sci. Trans., 1, 669-673 (2012).
C. L. Donnici, C.C. Souza, M.A. Beinner, J. B. da Silva, Fast determination of iron and zinc in hair and human serum samples after alkaline solubilization by GF AAS, J. Braz. Chem. Soc., 27, 119-126 (2016).
D. Bakircioglu, N. Topraksever, Y.Kurtulus, Determination of zinc in edible oils by flow injection FAAS after extraction induced by emulsion breaking procedure, Food Chem., 151, 219-224 (2013).
H. Barfeie, G. Grivani, V. Eigner et al., Copper(II), nickel(II), zinc(II) and vanadium(IV) Schiff base complexes: Synthesis, characterization, crystal structure determination, and thermal studies, Polyhedron, 146, 19-25 (2018).
V. Milosavljevic, Y. Haddad, M.A. Merlos-Rodrigo et al., The zinc-Schiff base-novicidin complex as a potential prostate cancer therapy, PloS One, 11(10), e0163983 (2016).
M. Sahin, N. Kocak, D. Erdenay, U. Arslan, Zn(II), Ni(II), Cu(II) and Pb(II) complexes of tridentate asymmetrical Schiff base ligands: Synthesis, characterization, properties and biological activity, Spectrochim. Acta, 15, 400-408 (2013).
P.S. Ganesh, B.E.K. Swamy, A.B. Teradale, Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid at poly(niacinamide) modified carbon paste electrode, Anal. Bioanal. Electrochem., 10, 612-620 (2018).
D. Sazou, The dynamic behavior of the electrochemical polymerization of indole in acetonitrile - water mixtures, Synth. Met., 130, 45-55 (2002).
I. Das, N. Goel, N.R. Agrawal, S.K. Gupta, Growth patterns of dendrimers and electric potential oscillations during electropolymerization of pyrrole using mono- and mixed surfactants, J. Phys. Chem., 114, 12888-12893 (2010).
M. Bazzaoui, E.A. Bazzaoui, L. Martins, J.I. Martins, Electropolymerization of pyrrole on zinc-lead-silver alloys’ electrodes in neutral and acid organic media, Synth. Met., 130, 73-80 (2002).
V. Tkach, B. Kumara Swamy, R. Ojani et al., El mecanismo de la oxidación de omeprazol sobre el electrodo de carbono vitroso, modificado por polializarina, y su descripción matemática, Orbital Electr. J. Chem., 7, 1-5 (2017).
V. Tkach, B. Kumara Swamy, R. Ojani et al., Comportamento de paracetamol durante a sua oxidação eletrocatalítica sobre poli(azul da anilina) e a sua descrição matemática, Rev. Colomb. Cienc. Quím. Farm., 44, 148-158 (2015).
I.I. Aksyonova, O.I. Panasenko, Ye. G. Knysh, Synthesis and physical-chemical properties of 3-(4-(tert-butyl)phenyl)-5-(R-ylthio)-4H-1,2,4-triazol-4-amines, Act. Probl. Med. Pharm. Sci., 20, 31-34 (2016).
V.M. Odyntsova, Ye. S. Pruglo, A.S. Gotsulya et al., Antihypoxic activity of salts of (2-(5-(adamantane-1-yl)-4H-1,2,4-triazole-3-ylthio) acetate acids, Zapor. J. Med., 2, 94-96 (2014).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13