Publicado
Prediction of sulfadiazine solubility in some cosolvent mixtures using non-ideal solution models
Predicción de la solubilidad de la sulfadiazina en algunas mezclas cosolventes utilizando modelos de solución no ideales
DOI:
https://doi.org/10.15446/rcciquifa.v49n3.91347Palabras clave:
Sulfadiazine, solubility, van’t Hoff model, Buchowski-Ksiazaczak, λh model, Apelblat model (en)Sulfadiazina, solubilidad, modelo de van’t Hoff, modelo de Buchowski-Ksiazaczak, λh, modelo de Apelblat (es)
Descargas
The experimental data of sulfadiazine in (methanol + water), (ethanol + water) and (1-propanol + water) cosolvent mixtures at some temperatures were correlated using non-ideal solution models, namely, the modified Apelblat and Buchowski-Ksiazaczak equations and the van’t Hoff equation. The calculated results agreed well with the experimental data. According to the Buchowski equation, the solubility of sulfadiazine in the three co-solvent mixtures shows important deviations from ideality, which is consistent with the literature.
Los datos experimentales de sulfadiazina en mezclas de cosolvente de (metanol + agua), (etanol + agua) y (1-propanol + agua) a algunas temperaturas se correlacionaron utilizando modelos de solución no ideales, a saber, las ecuaciones modificadas de Apelblat y Buchowski y la ecuación de van’t Hoff. Los resultados calculados coincidieron bien con los datos experimentales. Según la ecuación de Buchowski, la solubilidad de la sulfadiazina en las tres mezclas de cosolventes muestra importantes desviaciones de la idealidad, lo que concuerda con la literatura.
Referencias
R.S. Vardanyan, V.J. Hruby, Synthesis of Essential Drugs, Elsevier, Amsterdam (Netherlands), 2006, pp. 499-523.
H. Li, L. Duan, H. Wang, Y. Chen, F. Wang, S. Zhang, Photolysis of sulfadiazine under UV radiation: Effects of the initial sulfadiazine concentration, pH, NO3− and Cd2+, Chem. Phys. Lett., 739, 136949 (2020).
K. Kümmerer, A. Al-Ahmad, V. Mersch-Sundermann, Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test, Chemosphere, 40, 701-710 (2000).
D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures, Fluid Phase Equilib., 360, 88-96 (2013).
S.H. Yalkowsky, Solubility and solubilization in aqueous media, American Chemical Society and Oxford University Press, New York (NY), 1999.
D.R. Delgado, F. Martínez, Solution thermodynamics of sulfadiazine in some ethanol + water mixtures, J. Mol. Liq., 187, 99-105 (2013).
D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures, J. Solution Chem., 43, 836-852 (2014).
D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2014).
D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.A. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015).
M.M. Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban, F. Martínez, Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K, J. Mol. Liq., 204, 132-136 (2015).
S. Akay, B. Kayan, D. Cunbin, J. Wang, Y. Yang, Research of sulfadiazine using subcritical water and water + alcohol mixtures as the solvent: Solubility and thermodynamic property, J. Mol. Liq., 253, 270-276 (2018).
D.R. Delgado, G.A. Rodríguez, J.A. Martínez, J.H. Rojas, F. Martínez, Validación de una metodología analítica empleando espectrofotometría ultravioleta para el estudio de la solubilidad de algunas sulfonamidas en mezclas cosolventes alcohol + agua, Rev. Colomb. Quim., 42, 31-40 (2013).
S. Zadaliasghar, E. Rahimpour, T. Ghafourian, F. Martínez, M. Barzegar-Jalali, A. Jouyban, Measurement and mathematical modeling of ketoconazole solubility in propylene glycol + water mixtures at various temperatures, J. Mol. Liq., 291, 111246 (2019).
H. Kishi, Y. Hashimoto, Evaluation of the procedures for the measurement of water solubility and n-octanol/water partition coefficient of chemicals results of a ring test in Japan, Chemosphere, 18, 1749-1759 (1989).
A.Y. Lin, K.T. Cheng, S.C. Chen, H.W. Tsui, Effect of solvent composition on the van’t Hoff enthalpic curve using amylose 3,5-dichlorophenylcarbamate-based sorbent, J. Chromatogr. A, 1515, 179-186 (2017).
F. Shakeel, N. Haq, N.A. Siddiqui, F.K. Alanazi, I.A. Alsarra, Thermodynamics of the solubility of reserpine in {2-(2-ethoxyethoxy)ethanol + water} mixed solvent systems at different temperatures, J. Chem. Thermodyn., 85, 57-60 (2015).
M.A. Ruidiaz, D.R. Delgado, F. Martínez, Performance of the Jouyban-Acree and Yalkowsky-Roseman models for estimating the solubility of indomethacin in ethanol+ water mixtures, Rev. Acad. Colomb. Cienc., 35, 329-336 (2011).
X. Hu, Y. Tian, Z. Cao, J. Sha, Z. Huang, Y. Li, T. Li, B. Ren, Solubility measurement, Hansen solubility parameter and thermodynamic modeling of etodolac in four binary solvents from 278.15 K to 323.15 K, J. Mol. Liq., 318, 114155 (2020).
D.R. Delgado, G.A. Rodríguez, A.R. Holguín, F. Martínez, A. Jouyban, Solubility of sulfapyridine in propylene glycol + water mixtures and correlation with the Jouyban-Acree model, Fluid Phase Equilib., 341, 86-95 (2013).
G.A. Rodríguez, D.R. Delgado, F. Martínez, A. Jouyban, W.E. Acree Jr., Solubility of naproxen in ethyl acetate+ethanol mixtures at several temperatures and correlation with the Jouyban-Acree model, Fluid Phase Equilib., 320, 49-55 (2012).
I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban, W.E. Acree, Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation and solute volumetric contribution at saturation, J. Mol. Liq., 297, 111889 (2020).
D.J.W. Grant, M. Mehdizadeh, A.H.L. Chow, J.E. Fairbrother, Non-linear van’t Hoff solubility-temperature plots and their pharmaceutical interpretation, Int. J. Pharm., 18, 25-38 (1984).
G.A.M. Areiza-Aldana, A. Cuellar-Lozano, N.A. Peña-Carmona, D.I. Caviedes-Rubio, A. Mehrdad, A. Hossein-Miri, G.A. Rodríguez-Rodríguez, D.R. Delgado, Solution thermodynamics and preferential solvation of 3-chloro-N-phenyl-phthalimide in acetone + methanol mixtures, Rev. Colomb. Cienc. Quím. Farm., 45, 256-274 (2016).
D.R. Delgado, M.A. Peña, F. Martínez, A. Jouyban, W.E. Acree, Further numerical analyses on the solubility of sulfapyridine in ethanol + water mixtures, Pharm. Sci. (Tabriz), 22, 143-152 (2016).
A.M. Romero-Nieto, N.E. Cerquera, D.R. Delgado, Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution, Rev. Colomb. Cienc. Quím. Farm., 48, 332-347 (2019).
A.T. Williamson, The exact calculation of heats of solution from solubility data, Trans. Faraday Soc., 40, 421-436 (1944).
A. Apelblat, E. Manzurola, N.A. Balal, The solubilities of benzene polycarboxylic acids in water, J. Chem. Thermodyn., 38, 565-571 (2006).
A. Noubigh, M.H. Oueslati, Measurement and modeling of the solubility of vanillin constituent of olive mill wastewater in binary water + ethanol solvents mixtures between 278.15 K and 308.15 K, Austr. J. Basic Appl. Sci., 8, 396-403 (2014).
R. Heryanto, M. Hasan, E.C. Abdullah, A.C. Kumoro, Solubility of stearic acid in various organic solvents and its prediction using non-ideal solution models, ScienceAsia, 33, 469-472 (2007).
J. Cuevas-Valenzuela, Á. González-Rojas, J. Wisniak, A. Apelblat, J.R. Pérez-Correa, Solubility of (+)-catechin in water and water-ethanol mixtures within the temperature range 277.6-331.2 K: Fundamental data to design polyphenol extraction processes, Fluid Phase Equilib., 382, 279-285 (2015).
A.M. Romero-Nieto, D.I. Caviedes-Rubio, J. Polania-Orozco, N.E. Cerquera, D.R. Delgado, Temperature and cosolvent composition effects in the solubility of methylparaben in acetonitrile + water mixtures, Phys. Chem. Liq., Forthcoming 2020, doi: 10.1080/00319104.2019.1636379.
D.R. Delgado, A. Holguin, F. Martínez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, Rev. Fac. Quim. Farm., 19, 79-92 (2012).
D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban, F. Martínez, Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures, Ind. Eng. Chem. Res., 53, 16550-16558 (2014).
E.A. Ahumada, D.R. Delgado, F. Martínez, Solution thermodynamics of acetaminophen in some PEG 400 + water mixtures, Fluid Phase Equilib., 332, 120-127 (2012).
A. Ksiazczak, J.J. Kosinski, Vapour pressure of binary, three-phase (S-L-V) systems and solubility, Fluid Phase Equilib., 44, 211-236 (1988).
A. Ksiazczak, K. Moorthi, I. Nagata, Solid-solid transition and solubility of even n-alkanes, Fluid Phase Equilib., 95, 15-29 (1994).
S. Krajangsod, S. Chotikamas, A. Tawai, M. Sriariyanun, Measurement and thermodynamic modelling of erythritol solubility in aqueous solvents, Oriental J. Chem., 34, 265-275 (2018).
H. Buchowski, A. Ksiazczak, S. Pietrzyk, Solvent activity along a saturation line and solubility of hydrogen-bonding solids, J. Phys. Chem., 84, 975-979 (1980).
D.R. Delgado, M.A. Ruidiaz, S.M. Gómez, M. Gantiva, F. Martínez, Thermodynamic study of the solubility of sodium naproxen in some ethanol + water mixtures, Quim. Nova, 33, 1923-1927 (2010).
A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol + propylene glycol mixtures, Quim. Nova, 35, 280-285 (2012).
K.C. Mercado, G.A. Rodríguez, D.R. Delgado, F. Martínez, A. Romdhani, Solution thermodynamics of methocarbamol in some ethanol + water mixtures, Quim. Nova, 35, 1967-1972 (2012).
J.H. Blanco-Márquez, Y.A. Quigua-Medina, J.D. García-Murillo, J.K. Castro-Camacho, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides, Rev. Colomb. Cienc. Quím. Farm., 49, 234-255 (2020).
C. Holm, M. Zaman, Regulating audit quality: Restoring trust and legitimacy, Account. Forum, 36, 51-61 (2012).
J. Tritschler, Audit quality: Association between published reporting errors and audit firm characteristics, (Ph. D. thesis, University of Innsbruck, 2013), Springer-Gabler, 2014.
M.A. Ruidiaz, D.R. Delgado, F. Martínez, Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended Hildebrand solubility approach, Quim. Nova, 34, 1569-1574 (2011).
D.R. Delgado, M.Á. Peña, F. Martínez, Extended Hildebrand solubility approach applied to sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K, Phys. Chem. Liq., 57, 388-400 (2019).
M. Ruidiaz, D.R. Delgado, F. Martínez, Correlating the solubility of indomethacin in 1,4-dioxane + water mixtures by means of the Jouyban-Acree model, Rev. Colomb. Cienc. Quím. Farm., 39, 211-226 (2010).
F. Almanza, A.R. Holguín, D.R. Delgado, F. Martínez, A. Jouyban, Solution thermodynamics of sodium diclofenac in ethanol + water mixtures and correlation with the Jouyban-Acree model, Lat. Am. J. Pharm., 31, 427-436 (2012).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Rossember E. Cárdenas-Torres, Claudia Patricia Ortiz, William E. Acree, Abolghasem Jouyban, Fleming Martínez, Daniel Ricardo Delgado. (2022). Thermodynamic study and preferential solvation of sulfamerazine in acetonitrile + methanol cosolvent mixtures at different temperatures. Journal of Molecular Liquids, 349, p.118172. https://doi.org/10.1016/j.molliq.2021.118172.
2. Martha Sofía Vargas-Santana, Ana María Cruz-González, Nestor Enrique Cerquera, Alana Sofia Escobar Rodriguez, Rossember E. Cardenas, Omar Calderón-Losada, Claudia Patricia Ortiz, Daniel Ricardo Delgado. (2022). Extended Hildebrand solubility approach and Yalkowsky-Roseman model for estimating the solubility of sulfadiazine and sulfamethazine in some {ethylene glycol (1) + water (2)} mixtures at several temperatures. Revista Colombiana de Ciencias Químico-Farmacéuticas, 50(3) https://doi.org/10.15446/rcciquifa.v50n3.100240.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13