Publicado
Aminoglycoside resistance in domestic sewage and clinical Escherichia coli isolates
Resistencia a aminoglucósidos en aguas residuales domésticas y aislamientos clínicos de Escherichia coli
Resistência a aminoglicosídeos em esgoto doméstico e isolados clínicos de Escherichia coli
DOI:
https://doi.org/10.15446/rcciquifa.v51n2.97349Palabras clave:
Antimicrobial resistance, aminoglycoside, aminoglycoside-modifying enzymes, Escherichia coli, Brazil (en)resistencia a los antimicrobianos, aminoglucósidos, enzimas modificadoras de aminoglucósidos, Escherichia coli, Brasil (es)
Resistência aos antimicrobianos, aminoglicosídeos, enzimas modificadoras de aminoglicosídeos, Escherichia coli, Brasil (pt)
Descargas
Introduction: Escherichia coli, a Gram-negative bacillus, is found in diverse environments
and causes several human diseases, such as pneumonia and urinary tract
infections. Aminoglycosides are antimicrobials that present high activity against
Gram-negative species, including multidrug-resistant pathogens. However, the
indiscriminate use of these compounds has selected resistant microorganisms, mainly
due to the production of aminoglycoside-modifying enzymes (AME). Material and
methods: The minimal inhibitory concentration of the aminoglycosides amikacin,
gentamicin, and neomycin against clinical (CI, n = 52, only urinary) and domestic
sewage (DS, n = 33) E. coli isolates was determined by the microdilution method,
according to the European Committee on Antimicrobial Susceptibility Testing. The
presence of AMEs among E. coli isolates was determined based on the susceptibility
profile to amikacin, gentamicin, kanamycin, and tobramycin, according to Mancini
et al. (2019). Results: Overall, 33.3% of the DS isolates and 100% of the CI
isolates presented mechanisms of resistance to amikacin, gentamicin, or neomycin.
The extended-spectrum beta-lactamase enzymes-producing isolates (23/27, 85%)
showed mechanisms of resistance to gentamicin and/or neomycin and resistance
to amikacin was simultaneously observed only in CI isolates. All DS isolates were considered wild-type-no AME, while APH (3’) (14/52) and AAC (3’) (10/52)
enzymes were detected among CI isolates, one of which produces APH (3’) and
AAC (6’)-I simultaneously. Conclusion: Resistance to aminoglycosides is present
among E. coli isolates in Brazil, but to a lesser extent in environmental isolates.
Besides, AMEs are frequent in CI isolates, and surveillance for antimicrobial resistance
should be implemented to monitor aminoglycoside-resistant E. coli infections.
Introducción: Escherichia coli se encuentra en diversos ambientes y causa enfermedades
humanas. Los aminoglucósidos son antimicrobianos que presentan actividad
contra especies gramnegativas. Sin embargo, el uso indiscriminado de estos
compuestos ha seleccionado microorganismos resistentes, principalmente debido
a la producción de enzimas modificadoras de aminoglucósidos (AME). Material
y métodos: la concentración mínima inhibitoria de aminoglucósidos frente a
aislados de E.coli clínicos (CI, n = 52) y de aguas residuales sanitarias (DS, n = 33)
se determinó mediante el método de microdilución, según la European Committee
on Antimicrobial Susceptibility Testing. La presencia de AME se determinó con
base en el perfil de susceptibilidad a amikacina, gentamicina, kanamicina y tobramicina,
según Mancini et al. (2019). Resultados: 33,3% de los aislados de DS y
100% de los CI presentaron resistencia a amikacina, gentamicina o neomicina. Los
aislados productores de enzimas betalactamasas de espectro extendido (23/27, 85%)
mostraron resistencia a gentamicina y/o neomicina y la resistencia a amikacina se
observó simultáneamente solo en CI. Todos los aislados de DS se consideraron wild
type sin AME, mientras que las enzimas APH (3’) (14/52) y AAC (3’) (10/52) se
detectaron entre CI, uno de los cuales produce APH (3’) y AAC (6’)-I simultáneamente.
Conclusión: la resistencia a los aminoglucósidos está presente entre los
aislados de E. coli en Brasil, pero en menor grado en los aislados ambientales. Se debe
implementar la vigilancia de la resistencia a los antimicrobianos para monitorear las
infecciones por E. coli resistentes a los aminoglucósidos.
Introdução: Escherichia coli é encontrada em vários ambientes e causa doenças em
humanos. Os aminoglicosídeos são antimicrobianos que exibem atividade contra
espécies Gram-negativas. No entanto, o uso indiscriminado desses compostos
tem selecionado microrganismos resistentes, principalmente devido à produção
de enzimas modificadoras de aminoglicosídeos (EMA). Material e métodos: a
concentração inibitória mínima de aminoglicosídeos contra isolados de E. coli
recuperadas de amostras clínicas (IC, n=52) e de águas residuais sanitárias (AR,
n=33) foi determinada pelo método de microdiluição, de acordo com o European
Committee on Antimicrobial Susceptibility Testing. A presença de EMA foi determinada
com base no perfil de suscetibilidade à amicacina, gentamicina, canamicina e
tobramicina, de acordo com Mancini et al. (2019). Resultados: 33,3% dos ARS e
100% dos ICs apresentaram resistência à amicacina, gentamicina ou neomicina. Os
isolados produtores de enzima beta-lactamase de espectro estendido (23/27, 85%)
mostraram resistência à gentamicina e/ou neomicina e resistência à amicacina foi
observada simultaneamente apenas em um IC. Todos os ARs foram considerados
de tipo selvagem sem EMA, enquanto as enzimas APH (3’) (14/52) e AAC (3’)
(10/52) foram detectadas entre os ICs, um dos quais produz APH (3’) e AAC (6’)-I
simultaneamente. Conclusão: a resistência aos aminoglicosídeos está presente entre
isolados clínicos de E. coli no Brasil, mas em menor grau em isolados ambientais.
Assim a vigilância da resistência antimicrobiana deve ser implementada para monitorar
infecções por E. coli resistentes aos aminoglicosídeos.
Referencias
J.B. Kaper, J.P. Nataro, H.L.T. Mobley, Pathogenic Escherichia coli, Nat. Rev.
Microbiol., 2, 23-140 (2004). DOI: https://doi.org/10.1016/S0212-6982(04)72272-7
J. Jang, H.G. Hur, M.J. Sadowsky, M.N. Byappanahalli, T. Yan, S. Ishii, Environmental
Escherichia coli: ecology and public health implications – a review, J. App.
Microbiol., 123, 570-581 (2017). DOI: https://doi.org/10.1111/jam.13468
A. Schatz, E. Bugie, S.A. Waksman, Streptomycin, a substance exhibiting activity
against Gram-positive and Gram-negative bacteria, Exp. Biol. Med., 55, 66-69 DOI: https://doi.org/10.3181/00379727-55-14461
(1944).
A.W. Serio, T. Keepers, L. Andrews, K.M. Krause, Aminoglycoside revival:
review of a historically important class of antimicrobials undergoing rejuvenation,
EcoSal Plus, 8(1), ESP-0002 (2018).
B. Becker, M.A. Copper, Aminoglycoside antibiotics in the 21st century, ACS
Chem. Biol., 8, 105-115 (2013). DOI: https://doi.org/10.1021/cb3005116
P.D. Tamma, S.E. Cosgrove, L.L. Maragakis, Combination therapy for treatment
of infections with Gram-negative bacteria, Clin. Microbiol. Rev., 25, 450-470
(2012).
S. Magnet, J.S. Blanchard, Molecular insights into aminoglycoside action and
resistance, Chem. Rev., 105, 477-498 (2005). DOI: https://doi.org/10.1021/cr0301088
M.W. Vetting, C.H. Park, S.S. Hedge, G.A. Jacoby, D.C. Hooper, J.S. Blanchard,
Mechanistic and structural analysis of aminoglycoside N-acetyltransferase
AAC(6’)-Ib-cr and its bifuntional, fluoroquinolone-active AAC(6’)-Ib-cr
variant, Biochemistry, 47, 9825-9835 (2008). DOI: https://doi.org/10.1021/bi800664x
M.S. Ramirez, M.E. Tolmasky, Aminoglycoside modifying enzymes, Drug Resist.
Updat., 13, 151-171 (2010). DOI: https://doi.org/10.1016/j.drup.2010.08.003
M.E. Tolmasky, Bacterial resistance to aminoglycosides and beta-lactams: the
Tn1331 transposon paradigm, Front. Biosci., 5, 20-29 (2000). DOI: https://doi.org/10.2741/A493
K. Bush, Proliferation and significance of clinically relevant β-lactamases, Ann.
NY Acad. Sci., 1277, 84-90 (2013). DOI: https://doi.org/10.1111/nyas.12023
M. Fernández-Martínez, B. Ruiz Del Castillo, M.J. Lecea-Cuello, J. Rodríguez-
Baño, L. Martínez-Martínez, Spanish Network for the Research in Infectious
Diseases (REIPI) and the Spanish Group for Nosocomial Infections (GEIH),
Prevalence of aminoglycoside-modifying enzymes in Escherichia coli and Klebsiella
pneumoniae producing extended spectrum β-lactamases collected in two
multicenter studies in Spain, Microb. Drug. Resist., 4, 367-376 (2018).
E. Bodendoerfer, M. Marchesi, F. Imkamp, P. Courvalin, E.C. Bottger, S. Mancini,
Co-occurrence of aminoglycoside and β-lactam resistance mechanisms in
aminoglycoside non-susceptible Escherichia coli isolates in the Zurich area, Switzerland,
Int. J. Antimicrob. Agents, 56, 106019 (2020). DOI: https://doi.org/10.1016/j.ijantimicag.2020.106019
T.K.N. Bui, T.M.H. Bui, S. Ueda, D.T. Le, Y. Yamamoto, I. Hirai, Potential
transmission opportunity of CTX-M- producing Escherichia coli on a large-scale
chicken farm in Vietnam, J. Glob. Antimicrob. Resist., 13, 1-6 (2018).
V.D. Gonçalves, F. Meirelles-Pereira, M. Cataldo, B.O. Fonseca, B.A. Nogueira,
J.G.B. Olivella, F.A. Esteves, L. Matos-Guaraldi, A.F.B. Andrade, A.R. Bello,
J.A.A. Pereira, Detection of multidrug-resistant Enterobacteriaceae isolated
from rivers waters flowing to the Guanabar Bay and from clinical samples of hospitals
in Rio de Janeiro, Brazil, Biomedica, 39(s1), 135-149 (2019). DOI: https://doi.org/10.7705/biomedica.v39i0.4391
K.S. Gozi, J.R. Froes, L.P.T. Deus Ajude, C.R. da Silva, R.S. Baptista, J.R. Peiró,
M. Marinho, L.C.C.Mendes, M.C.L. Nogueira, T. Casella, Dissemination of
multidrug-resistant commensal Escherichia coli in feedlot lambs in Southeastern
Brazil, Front. Microbiol., 10, 1394 (2019). DOI: https://doi.org/10.1039/C8AY90040J
M.P.N. de Carvalho, M.R. Fernandes, F.P. Sellera, R. Lopes, D.F. Monte, A.G.
Hippólito, L. Milanelo, T.F. Raso, N. Lincopan, International clones of extended-
spectrum β-lactamase (CTX-M) producing Escherichia coli in peri-urban
wild animals, Brazil, Transbound. Emerg. Dis., 67(5), 1804-1815 (2020).
J.A. van de Klundert, J.S. Vliegenthart, E. van Doorn, G.P. Bongaerts, L. Molendijk,
R.P. Mouton, A simple method for identification of aminoglycoside-modifying
enzymes, J. Antimicrob. Chemoter., 14, 339-348 (1984). DOI: https://doi.org/10.1093/jac/14.4.339
S. Mancini, M. Marchesi, F. Imkamp, K. Wagner, P.M. Keller, C. Quiblier, E.
Bodendoerfer, P. Courvalin, E.C. Böttger, Population-based inference of aminoglycoside
resistance mechanisms in Escherichia coli, EBioMedicine, 46, 184-192
(2019).
N.T. Alves-Coelho, R.S. Silva, G.M. Delmondes, W.G. Lima, C.E.M. Jensen,
M.C. Paiva, Occurrence of extended-spectrum beta-lactamase (ESBL) and carbapenemases
among ampicillin-resistant Enterobacteriales recovered from a
municipal raw sewage in Minas Gerais, Brazil, Rev. Colomb. Cienc. Quím. Farm.,
(3), 708-725 (2021).
Clinical Laboratory Standard Institute (CLSI), Performance standards for antimicrobial
susceptibility testing, Nineteenth informational supplement, M100-S27,
European Committee on Antimicrobial Susceptibility Testing (EUCAST),
EUCAST reading guide for broth microdilution and EUCAST breakpoint
tables for interpretation of MICs and zone diameters, 2021, URL: http:// www.
eucast.org/fileadmin/src/media/pdf.
P.C. Lindemann, K. Risberg, H.G. Wiker, H. Mylvaganam, Aminoglycoside
resistance in clinical Escherichia coli and Klebsiella pneumoniae isolates from
Western Norway, J. Pathol. Microbiol. Immunol., 120, 495-502 (2012). DOI: https://doi.org/10.1111/j.1600-0463.2011.02856.x
N. Soleimani, M. Aganj, L. Ali, L. Shokoohizadeh, T. Sakinc, Frequency distribution
of genes encoding aminoglycoside modifying enzymes in uropathogenic
E. coli isolated from Iranian hospital, BMC Res. Notes, 7, 842 (2014). DOI: https://doi.org/10.1186/1756-0500-7-842
C. Moennighoff, N. Thomas, F. Nienhaus, M. Hartmann, A. Menrath, J. Merkel,
H. Detlefsen, L. Kreienbrock, I. Hennig-Pauka, Phenotypic antimicrobial
resistance in Escherichia coli strains isolated from swine husbandries in North
Western Germany – Temporal patterns in samples from laboratory practice from
to 2017, BMC Vet. Res., 16, 37 (2020). DOI: https://doi.org/10.1186/s12917-020-2268-z
European Centre for Disease Prevention and Control (ECDC), Surveillance
report: Surveillance of antimicrobial consumption in Europe 2012, URL: http://
www.ecdc.europa.eu/, accessed 16 Nov 2019.
R.J. Loureiro, F. Roque, A. Teixeira-Rodrigues, M.T. Herdeiro, E. Ramalheira,
O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução,
Rev. Port. Saúde Pública, 34, 77-84 (2016). DOI: https://doi.org/10.1016/j.rpsp.2015.11.003
M.T. Valenzuela, C. de Quadros, Antibiotic resistance in Latin America: A cause
for alarm, Vaccine, 27, 25-28 (2009). DOI: https://doi.org/10.1016/j.vaccine.2009.06.005
D. Odjana , A. Sienko, P. Sacha, P. Majewski, P. Wieczorek, A. Wieczorek, E.
Tryniszewska, Genetic basis of enzymatic resistance of E. coli amoniglycosides,
Adv. Med. Sci., 63, 9-13 (2018). DOI: https://doi.org/10.4103/jdmimsu.jdmimsu_108_17
N. Tsukamoto, Y. Ohkoshi, T. Okubo, T. Sato, O. Kuwahara, N. Fujii, Y. Tamura,
S. Yokota, High prevalence of cross-resistance to aminoglycosides in fluoroquinolone-
resistant Escherichia coli clinical isolates, Chemotherapy, 59, 379-384
(2013).
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13