Publicado
Biological activities of 1,4-naphthoquinones derivatives against T. cruzi and L. amazonensis
Actividades biológicas de derivados de 1,4-naftoquinonas contra T. cruzi y L. amazonensis
Atividades biológicas de derivados de 1,4-naftoquinonas contra T. cruzi e L. amazonensis
DOI:
https://doi.org/10.15446/rcciquifa.v51n2.98279Palabras clave:
Naphthoquinone, Trypanosoma cruzi, Leishmania, Chagas diseases (en)Naftoquinona, Trypanosoma cruzi, Leishmania, enfermedad de Chagas (es)
Naftoquinona, Trypanosoma cruzi, Leishmania, doença de Chagas (pt)
Descargas
Introduction: Chagas disease and Leishmaniasis are neglected diseases caused by
the Trypanosoma cruzi and kentoplastid parasites Leishmania spp. Parasitic diseases
cause great impact on social and economic, affecting millions of people in the world
and represent a major global health problem. In the search for new alternatives for the
treatment of Leishmaniasis and Chagas disease, strategies have been used to discover
new active molecules, because there is an urgent need for the development of new
drugs. In this scenario, 1,4-naphthoquinones have shown notable activity in the
context of neglected diseases. Aim: To synthesis of 1,4-naphthoquinones derivatives
and evaluated these compounds against Trypanosoma cruzi epimastigotes, Leishmania
promastigotes (Leishmania amazonensis) and cytotoxicity to LLCMK2 cells.
Results: Nine 1,4-naphthoquinones derivatives were synthesized using 2-Bromo-
1,4-naphthoquinone (1), 1,4-Naphthoquinone (5) and 2-Hydroxi-1,4-naphthoquinone
(9) as starting material. Derivative 6a exhibited excellent trypanocidal activity,
IC50 of 0.25 ± 0.02 μM, superior potency compared with the reference drug Benznidazol.
Besides, these compounds displayed low activity against promastigote from L.
amazonensis. Conclusion: The results indicate that compound 6a may have potential
for agent against Chagas disease.
Introducción: la enfermedad de Chagas y la leishmaniasis son enfermedades desatendidas
causadas por los parásitos Trypanosoma cruzi y kentoplastid Leishmania spp.
Las enfermedades parasitarias tienen un gran impacto social y económico, afectan a
millones de personas en el mundo y representan un importante problema de salud
mundial. En la búsqueda de nuevas alternativas para el tratamiento de la leishmaniasis
y la enfermedad de Chagas, se han utilizado estrategias para descubrir nuevas
moléculas activas, porque existe una necesidad urgente de desarrollo de nuevos
fármacos. En este escenario, las 1,4-naftoquinonas han mostrado una notable actividad
en el contexto de enfermedades desatendidas. Objetivo: sintetizar derivados
de 1,4-naftoquinonas y evaluación de estos compuestos frente a epimastigotes de
Trypanosoma cruzi, promastigotes de Leishmania (Leishmania amazonensis) y
citotoxicidad a células LLCMK2. Resultados: se sintetizaron nueve derivados de
1,4-naftoquinonas usando 2-bromo-1,4-naftoquinona (1), 1,4-naftoquinona (5) y
2-hidroxi-1,4-naftoquinona (9) como material de partida. El derivado 6a exhibió
una excelente actividad tripanocida, CI50 de 0,25 ± 0,02 μM, potencia superior en
comparación con el fármaco de referencia Benznidazol. Además, estos compuestos
mostraron una baja actividad contra el promastigote de L. amazonensis. Conclusión:
los resultados indican que el compuesto 6a puede tener potencial como agente
contra la enfermedad de Chagas.
Introdução: a doença de Chagas e a leishmaniose são doenças negligenciadas
causadas pelos parasitas Trypanosoma cruzi e kentoplastídeos Leishmania spp. As
doenças parasitárias causam grande impacto social e econômico, afetando milhões
de pessoas no mundo e representam um dos maiores problemas de saúde global.
Na busca por novas alternativas para o tratamento da Leishmaniose e da doença de
Chagas, estratégias têm sido utilizadas para descobrir novas moléculas ativas, porque há urgência no desenvolvimento de novos fármacos. Nesse cenário, as 1,4-naftoquinonas
têm mostrado notável atividade no contexto das doenças negligenciadas.
Objetivos: sintetizar derivados de 1,4-naftoquinonas e avaliar esses compostos contra
epimastigotas de Trypanosoma cruzi, promastigotas de Leishmania (Leishmania
amazonensis) e citotoxicidade para células LLCMK2. Resultados: nove derivados
de 1,4-naftoquinonas foram sintetizados usando 2-Bromo-1,4-naftoquinona (1),
1,4-Naftoquinona (5) e 2-Hidroxi-1,4-naftoquinona (9) como material de partida.
O derivado 6a exibiu excelente atividade tripanocida, IC50 de 0,25 ± 0,02 μM,
potência superior em comparação com o medicamento de referência Benzonidazol.
Além disso, esses compostos apresentaram baixa atividade contra a forma promastigota
de L. amazonensis. Conclusão: os resultados indicam que o composto 6a pode
ter potencial para agente contra a doença de Chagas.
Referencias
F.F. Norman, B. Monge-Maillo, A. Martínez-Pérez, J.A. Perez-Molina, R. López-
Vélez, Parasitic infections in travelers and immigrants: part I protozoa, Future
Microbiol., 10(1), 69-86 (2015). DOI: https://doi.org/10.1128/microbe.10.86.1
B. Munksgaard, Parasitic infections, Am. J. Transplant., 4(s10), 142-155 (2004). DOI: https://doi.org/10.1111/j.1600-6135.2004.00677.x
B. Singh, S. Varikuti, G. Halsey, G. Volpedo, O.M. Hamza, A.R. Satoskar, Hostdirected
therapies for parasitic diseases, Future Med. Chem., 11(15), 1999-2018
(2019).
C. Vergara, G. Muñoz, G. Martínez, W. Apt, I. Zulantay, Detection of Trypanosoma
cruzi by PCR in adults with chronic Chagas disease treated with nifurtimox,
PLoS One, 14(8), e0221100 (2019). DOI: https://doi.org/10.1371/journal.pone.0221100
J.A. Castillo-Garit, O. del Toro-Cortés, M.C. Vega, M. Rolón, A. Rojas de Arias,
G.M. Casañola-Martin, J.A. Escario, A. Gómez-Barrio, Y. Marrero-Ponce, F.
Torrens, C. Abad, Bond-based bilinear indices for computational discovery of
novel trypanosomicidal drug-like compounds through virtual screening, Eur. J.
Med. Chem., 96, 238-244 (2015).
T.G. Melo, D. Adesse, M.N. Meirelles, M.C.S. Pereira, Trypanosoma cruzi down-
-regulates mechanosensitive proteins in cardiomyocytes, Mem. Inst. Oswaldo
Cruz, 114, e180593 (2019). DOI: https://doi.org/10.22478/ufpb.2359-7003.2019v28n1.24695
A.C.M.V. Trompowsky, T.R. Conde, R.C. Lemos, B.M.C. Quaresma, M.C.S.
Pitombeira, A.S. Carvalho, N. Boechat, K. Salomão, S.L. Castro, H.P.S. Zamith,
In vitro genotoxicity of nitroimidazoles as a tool in the search of new trypanocidal
agents, Mem. Inst. Oswaldo Cruz, 114, e190017 (2019).
F.J.A. Santos, L.S. Silva, J.E. Santo Júnior, T.G.R. Mesquita, M.L.G. Souza, M.C.
Andrade Júnior, S. Talhari, R. Ramasawmy, Single nucleotide polymorphisms
of the genes IL-2, IL-2RB, and JAK3 in patients with cutaneous leishmaniasis caused by Leishmania (V) guyanensis in Manaus, Amazonas, Brazil, PLoS One,
(8), e0220572 (2019).
D.S. Moreira, M.V. Xavier, S.M.F. Murta, Ascorbate peroxidase over expression
protect Leishmania braziliensis against trivalente antimony effects, Mem. Inst.
Oswaldo Cruz, 113(12), e180377 (2018). DOI: https://doi.org/10.1590/0074-02760170339
B.B. Cota, L.G. Tunes, D.N.B. Maia, J.P. Ramos, D.M. Oliveira, M. Hohlhoff,
T.M. Alves, E.M. Souza-Fagundes, F.F. Campos, C.L. Zani, Leishmanicidal compounds
of Nectria pseudotrichia, an endophytic fungus isolated from the plant
Caesalpinia echinata (Brazilwood), Mem. Inst. Oswaldo Cruz, 113(2), 102-110
(2018).
C.M. Cascabulho, M. Meuser-Batista, K.C.G. Moura, M.C. Pinto, T.L.A.
Duque, K.C. Demarque, A.C.R. Guimarães, P.P.A. Manso, M. Pelajo-Machado,
G.M. Oliveira, S.L. Castro, R.F.S. Menna-Barreto, Antiparasitic and anti-inflammatory
activities of β-Lapachone-derived naphthoimidazoles in experimental
acute Trypanosoma cruzi infection, Mem. Inst. Oswaldo Cruz, 115, e190389
(2020).
A. Arora, D. Gupta, D. Rastogi, M. Gulrajani, Naphthoquinone colorants from
Arnebia nobilis Rech.f, Coloration Technology, 128(5), 350-355 (2012). DOI: https://doi.org/10.1111/j.1478-4408.2012.00383.x
E.N. Silva Júnior, G.A.M. Jardim, C. Jacob, U. Dhawa, L. Ackermann, S.L. Castro,
Synthesis of quinones with highlighted biological applications: A critical
update on the strategies towards bioactive compounds with emphasis on lapachones,
Eur. J. Med. Chem., 179, 863-915 (2019). DOI: https://doi.org/10.1016/j.ejmech.2019.06.056
E. Leyva, L.I. Lopez, S.E. Loredo-Carrillo, M. Rodriguez-Kessler, A. Montes-
Rojas, Synthesis, spectral and electrochemical characterization of novel, J. Fluor.
Chem., 132, 94-101 (2011). DOI: https://doi.org/10.1016/j.jfluchem.2010.12.001
R.F.S. Menna-Barreto, R.L.S. Gonçalves, E.M. Costa, R.S.F. Silva, A.V. Pinto,
M.F. Oliveira S.L. de Castro, The effects on Trypanosoma cruzi of novel synthetic
naphthoquinones are mediated by mitochondrial dysfunction, Free Radic. Biol.
Med., 47(5), 644-653 (2009). DOI: https://doi.org/10.2144/000113211
M. Janeczko, O. M. Demchuk, D. Strzelecka, K. Kubinski, M. Maslyk, New
family of antimicrobial agents derived from 1,4-naphthoquinone, Eur. J. Med.
Chem., 124, 1019-1025 (2016). DOI: https://doi.org/10.1016/j.ejmech.2016.10.034
I.A. Schepetkin, A.S. Karpenko, A.I. Khlebnikov, M.O. Shibinska, I.A. Levandovsky,
L.N. Kirpotina, N.V. Danilenko, M.T. Quinn, Synthesis, anticancer
activity, and molecular modeling of 1,4-naphthoquinones that inhibit MKK7
and Cdc25, Eur. J. Med. Chem., 183, 111719 (2019). DOI: https://doi.org/10.1016/j.ejmech.2019.111719
M.A. Berghot, E.M. Kandeel, A.H. Abdel-Rahman, M. Abdel-Motaal, Synthesis,
antioxidant and cytotoxic activities of novel naphthoquinone derivatives
from 2,3-dihydro-2,3-epoxy-1,4-naphthoquinone, Med. Chem., 4(3), 381-388
(2014).
A.O. Silva, R.S. Lopes, R.V. Lima, C.S.S. Tozatti, M.R. Marques, S. Albuquerque,
A. Beatriz, D.P. Lima, Synthesis and biological activity against Trypanosoma
cruzi of substituted 1,4-naphthoquinones, Eur. J. Med. Chem., 60, 51-56 (2013). DOI: https://doi.org/10.1016/j.ejmech.2012.11.034
A.A.S. Naujorks, A.O. Silva, R.S. Lopes, S. Albuquerque, A. Beatriz, M.R.
Marques, D.P. Lima, Novel naphthoquinones derivatives and evaluation of their
trypanocidal and leishmanicidal activities, Org. Biomol. Chem., 13(2), 428-437
(2015).
K. Kobayashi, S. Nishiumi, M. Nishida, M. Hirai, T. Azuma, H. Yoshida, Y.
Mizushina, M. Yoshida, Effects of quinone derivatives, such as 1,4-naphthoquinone,
on DNA polymerase inhibition and anti-inflammatory action, Med.
Chem., 7(1), 37-44 (2011). DOI: https://doi.org/10.1111/j.1748-0922.2010.01487_7.x
P.J. Jewess, J. Higgins, K.J. Berry, S.R. Moss, A.B. Boogaard, B.P.S. Khambay,
Herbicidal action of 2-hydroxy-3-alkyl-1,4-naphthoquinones, Pest Manag. Sci.,
(3), 234-243 (2002).
E. Pérez-Sacau, A. Estéves-Braun, A.G. Ravelo, D.G. Yapu, A.G. Turba, Antiplasmodial
activity of naphthoquinones related to lapachol and β-lapachone,
Chem. Biodivers., 2(2), 264-274 (2005).
N. Jacobsen, A. Wengel, Fungicidal activity of 2-(1-alkenyl)-3-hydroxy-1,4-naphthoquinones
and related compounds, Pestic. Sci., 17, 686-690 (1986). DOI: https://doi.org/10.1002/ps.2780170611
M.B. Graham, J.H.P. Tyman, Ozonization of phenols from Anacardium occidentale
(cashew), J. Am. Oil Chem. Soc., 79, 725-732 (2002). DOI: https://doi.org/10.1007/s11746-002-0549-8
B. Liu, L. Gu, J. Zhang, Synthesis of vitamin-K derivatives with different lengths
of the alkyl side chain, Recueil des Travaux Chimiques des Pays-Bas, 110(4),
-103 (1991).
Y. Brandy, E. Akinbove, M. Lewis, C. Mouamba, S. Mack, R.J. Butcher, A.J.
Anderson, O. Bakare, Synthesis and characterization of novel unsymmetrical
and symmetrical 3-halo- or 3-methoxy-substituted 2-dibenzoylamino-1,4-naphthoquinone
derivatives, Molecules, 18, 1973-1984 (2013). DOI: https://doi.org/10.3390/molecules18021973
S.E. Hage, M. Ane, J.L. Stigliani, M. Marjorie, H. Vial, G. Baziard-Mouysset, M.
Payard, Synthesis and antimalarial activity of new atovaquone derivatives, Eur. J.
Med. Chem., 44, 4778-4782 (2009). DOI: https://doi.org/10.1016/j.ejmech.2009.07.021
R.A. Tapia, C.O. Salas, K. Vázquez, C. Espinosa-Bustos, J. Soto-Delgado, J.
Varela, E. Birriel, H. Cerecetto, M. González, M. Paulino, Synthesis and biological
characterization of new aryloxyindole-4,9-diones as potent trypanosomicidal
agents, Bioorg. Med. Chem. Lett., 24, 3919-3922 (2014). DOI: https://doi.org/10.1016/j.bmcl.2014.06.044
M.L. Bolognesi, F. Lizzi, R. Perozzo, R. Brun, A. Cavalli, Synthesis of a small
library of 2-phenoxy-1,4-naphthoquinone and 2-phenoxy-1,4-naphthoquinone
derivatives bearing anti-trypanosomal and anti-leishmanial activity, Bioorg. Med.
Chem. Lett., 18, 2272-2276 (2008). DOI: https://doi.org/10.1039/b800289d
J.H.S. Rodrigues, T. Ueda-Nakamura, A.G. Corrêa, D.P. Sangi, C.V.A. Nakamura,
Quinoxaline derivative as potent chemtherapeutic agent, alone or in
combination with benznidazole, against Trypanosoma cruzi, PLoS One, 9(1),
e85706 (2014).
G. Naturale, M. Lamblin, C. Commandeur, F.X. Felpin, J. Dessolin, Direct C-H
alkylation of naphthoquinones with amino acids through a revisited Kochi-Anderson
radical decarboxylation: Trends in reactivity and applications, Eur. J. Org.
Chem., 29, 5774-5788 (2012). DOI: https://doi.org/10.1002/ejoc.201200722
K. Salomão, N.A. Santana, M.T. Molina, S.L. Castro, R.F.S. Menna-Barreto,
Trypanosoma cruzi mitochondrial swelling and membrane potential colapse as
primary evidence of the mode of action of naphthoquinones analogues, BMC
Microbiol., 13, 196 (2013). DOI: https://doi.org/10.1002/pmic.201370016
A. Morello, M. Pavani, J.A. Garbarino, M.C. Chamy, C. Frey, J. Mancilla, A.
Guerrero, Y. Repetto, J. Ferreira, Effects and mode of action of 1,4-naphthoquinones
isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites,
Comp. Biochem. Physiol., 112C, 119-128 (1995).
J.H.P. Tyman, I.E. Bruce, Synthesis and characterization of polyethoxylated surfactants
derived from phenolic lipids, J. Surfactants Deterg., 6, 291-297 (2003). DOI: https://doi.org/10.1007/s11743-003-0272-3
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El Departamento de Farmacia de la Facultad de Ciencias de la Universidad Nacional de Colombia autoriza la fotocopia de artículos y textos para fines de uso académico o interno de las instituciones citando la fuente. Las ideas emitidas por los autores son responsabilidad expresa de estos y no de la revista.
Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons de Atribución 4.0 aprobada en Colombia. Consulte la normativa en: http://co.creativecommons.org/?page_id=13