Published
Nanoparticles: A delivery system for antifungals
Nanopartículas: Un sistema de entrega de antifúngicos
Nanopartículas: um sistema de entrega antifúngico
DOI:
https://doi.org/10.15446/rcciquifa.v53n2.114456Keywords:
Nanotechnology, nanomaterials, nanoparticles, antifungals (en)Nanotecnología, nanomateriales, nanopartículas, antifúngicos (es)
Nanotecnologia, nanomateriais, nanopartículas, antifúngicos (pt)
Downloads
Introduction: The increase in the incidence of pathologies in which fungi appear as emerging pathogens is mainly associated with opportunistic fungi as well as susceptibility in patients with a certain degree of immunodeficiency because they present some risk factors such as neutropenia, diabetes, surgeries, abuse of antibiotic treatment, nosocomial diseases and transplant patients among others. To date, antifungal therapy is far from being ideal because in addition to resistance to antifungals, there is a limitation of their availability as a consequence of their toxicity, as well as the decrease in the effectiveness of the drug in free form, minimal restricted penetration. to tissues, decreased bioavailability, poor pharmacokinetics, lack of selectivity, severe side effects and low water solubility: Due to this situation, it is necessary to have new therapeutic measures that are efficient to combat mainly invasive mycoses, hence the objective of this review work to know the state of the art of the various antifungal delivery systems. Development of the topic: This bibliographic review addresses the following aspects related to: a) Types and structure of nanomaterials, b) Antifungal activity of nanoparticles and c) In vivo evaluation and cytotoxicity of nanoparticles. Conclusion: The development of new technologies and synthesis of nanomaterials emerges as a possible alternative for the treatment of fungal infections. In this work, the main advances related to nanomaterials designed as a possible delivery system for antifungals are presented.
Introducción: El aumento en la incidencia de patologías en las que los hongos aparecen como patógenos emergentes, se asocia principalmente con hongos oportunistas así como con la susceptibilidad en pacientes con cierto grado de inmunodeficiencia debido a que presentan algunos factores de riesgo como son la neutropenia, diabetes, cirugías, abuso de tratamiento con antibióticos, enfermedades nosocomiales y pacientes transplantados entre otros. A la fecha la terapia antifúngica está muy lejos de ser ideal porque además de la resistencia a los antifúngicos, existe una limitación de su disponibilidad como consecuencia de su toxicidad, así como a la disminución de la efectividad del fármaco en forma libre, mínima penetración restringida a tejidos, disminución de la biodisponibilidad, pobre farmacocinética, falta de selectividad, efectos colaterales severos y baja solubilidad en agua: Por esta situación, se obliga a contar con nuevas medidas terapéuticas que sean eficientes para combatir principalmente a las micosis invasivas, de ahí el objetivo del presente trabajo de revisión para conocer el estado del arte de los diversos sistemas de entrega de antifúngicos. Desarrollo del tema: La presente revisión bibliográfica aborda los siguientes aspectos relacionados con: a) Tipos y estructura de los nanomateriales, b) Actividad antifúngica de nanopartículas y c) Evaluación in vivo y citotoxicidad de nanopartículas. Conclusión: El desarrollo de nuevas tecnologías y síntesis de nanomateriales surge como una posible alternativa para el tratamiento de las infecciones por hongos. En este este trabajo se presentan los principales avances relacionados con nanomateriales diseñados como un posible sistema de entrega de antifúngicos.
Introdução: O aumento da incidência de patologias em que os fungos aparecem como patógenos emergentes está principalmente associado a fungos oportunistas bem como à suscetibilidade em pacientes com certo grau de imunodeficiência por apresentarem alguns fatores de risco como neutropenia, diabetes, cirurgias, abuso de tratamento com antibióticos, doenças nosocomiais e pacientes transplantados, entre outros. Até à data, a terapia antifúngica está longe de ser ideal porque além da resistência aos antifúngicos, existe uma limitação da sua disponibilidade em consequência da sua toxicidade, bem como a diminuição da eficácia do medicamento Nanopartículas: Un sistema de entrega de antifúngicos 539 na forma livre, penetração mínima restrita aos tecidos, diminuição da biodisponibilidade, má farmacocinética, falta de seletividade, efeitos colaterais graves e baixa solubilidade em água: Devido a esta situação, é necessário ter novas medidas terapêuticas que sejam eficientes para combater principalmente micoses invasivas, daí o objetivo deste revisar trabalhos para conhecer o estado da arte dos diversos sistemas de entrega de antifúngicos. Desenvolvimento do tema: Esta revisão bibliográfica aborda os seguintes aspectos relacionados a: a) Tipos e estrutura de nanomateriais, b) Atividade antifúngica de nanopartículas e c) Avaliação in vivo e citotoxicidade de nanopartículas. Conclusão: O desenvolvimento de novas tecnologias e síntese de nanomateriais surge como uma possível alternativa para o tratamento de infecções fúngicas. Neste trabalho são apresentados os principais avanços relacionados aos nanomateriais concebidos como um possível sistema de entrega de antifúngicos.
References
C.G. Lizarazo-Salcedo, E.E. González-Jiménez, C.Y. Arias-Portela, J. Guaraguati- Ariza, Nanomateriales: un acercamiento a lo básico, Medicina y Seguridad del Trabajo, 64(251), 109-118 (2018). URL: https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S0465-546X2018000200109
F. Diaz del Castillo-Rodríguez, Lecturas de Ingeniería 20. Introducción a los nanomateriales, Facultad de Estudios Superiores Cuautiltán Izcalli, UNAM, México, 2012, 82 p. URL: http://olimpia.cuautitlan2.unam.mx/pagina_ ingenieria/mecanica/mat/mat_mec/m6/Introduccion%20a%20los%20nanomateriales.pdf
S.L. Estrada-Flores, C. García-Morales, C.M. Pérez-Berumen, L. Cantu- Sifuentes, Nanomateriales conceptos, aplicacion en nanoterapia y regulaciones, Química Viva, 22(1), E0242 (2023). URL: http://www.quimicaviva.qb.fcen.uba.ar/v22n1/E0242.html
T.P.J. Linsinger, G. Roebben, C. Solans, R. Ramsch, Reference materials for measuring the size of nanoparticles, TrAC Trends in Analytical Chemistry, 30(1), 18-27 (2011). Doi: https://doi.org/10.1016/j.trac.2010.09.005
T. Huang, X. Li, M. Maier, N.M. O’Brien-Simpson, D.E. Heath, A.J. O’Connor, Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era, Acta Biomaterialia, 158, 56-79 (2023). Doi: https://doi.org/10.1016/j.actbio.2023.01.019
S. Onoue, S. Yamada, H.-K. Chan, Nanodrugs: pharmacokinetics and safety, International Journal of Nanomedicine, 9, 1025-1037 (2014). Doi: https://doi.org/10.2147/IJN.S38378
S. Nami, A. Aghebati-Maleki, L. Aghebati-Maleki, Current applications and prospects of nanoparticles for antifungal drug delivery, EXCLI Journal, 20, 562- 584 (2021). Doi: https://doi.org/10.17179/excli2020-3068
M. Vijay, M. Singh, Y. Mishra, N. Charbe, P. Nayak, K. Sudhakar, A.A. Aljabali, H.S. Shahcheraghi, H. Bakshi, A. Serrano-Aroca, et al., Nanoarchitectures in management of fungal diseases: An overview, Applied Sciences, 11(15), 7119 (2021). Doi: https://doi.org/10.3390/app11157119
S. Alcalá-Alcalá, D. Quintanar-Guerrero, La terapia a nanoescala: ensamble de estructuras liberadoras de fármacos, Mundo Nano, 7(12), 32-48 (2014). URL: https://www.scielo.org.mx/pdf/mn/v7n12/2448-5691-mn-7-12-32.pdf
I. Younus, J.S. Khan, S. Maqbool, Z. Begum, Antifungal therapy via incorporation of nanostructures: A systematic review for new dimensions, Physica Scripta, 97, 012001 (2022). Doi: https://doi.org/10.1088/1402-4896/ac445d
R. Fernández-García, E. de Pablo, M.P. Ballesteros, D.R. Serrano, Unmet clinical needs in the treatment of systemic fungal infections: The role of amphotericin B and drug targeting, International Journal of Pharmaceutics, 525(1), 139-148 (2017). Doi: https://doi.org/10.1016/j.ijpharm.2017.04.013
L.E. Castrillón-Rivera, A. Palma-Ramos, Actividad antimicótica de nanopartículas, Mundo Nano, 7(12), 6-18 (2014). URL: http://www.mundonano.unam.mx/ojs/index.php/nano/article/view/49099/44150
S. Vermaa, P. Utrejab, Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy, Asian Journal of Pharmaceutical Sciences, 14(2), 117-129 (2019). Doi: https://doi.org/10.1016/j.ajps.2018.05.007
F. Sousa, D. Ferreira, S. Reis, P. Costa, Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drug from natural sources, Pharmaceuticals, 13(9), 248 (2020). Doi: https://doi.org/10.3390/ph13090248
A. Jangjou, Z. Zareshahrabadi, M. Abbasi, A. Talaiekhozani, H. Kamyab, S. Chelliapan, A. Vaez, A. Golchin, L. Tayebi, E. Vafa, et al., Time to conquer fungal infectious diseases: Employing nanoparticles as powerful and versatile antifungal nanosystems against a wide variety of fungal species, Sustainability, 14(19), 12942 (2022). Doi: https://doi.org/10.3390/su141912942
W. Du, Y. Gao, L. Liu, S. Sai, C. Ding, Striking back against fungal infections: The utilization of nanosystems for antifungal strategies, International Journal of Molecular Sciences, 22(18), 10104 (2021). Doi: https://doi.org/10.3390/ijms221810104
M.L. Immordino, F. Dosio, L. Cattel, Stealth liposomes: Review of the basic science, rationale and clinical applications, existing and potential, International Journal of Nanomedicine, 1(3), 297-315 (2006). URL: https://www.tandfonline.com/doi/pdf/10.2147/DIJN.1.S633
A. Jersoka, O. Orwar, Liposomes: Technologies and analytical applications, Annual Review of Analytical Chemistry, 1, 801-832 (2008). Doi: https://doi.org/10.1146/annurev.anchem.1.031207.112747
P. Asadi, A. Mehravaran, N. Soltanloo, M. Abastabar, J. Akhtari, Nanoliposome- loaded antifungal drugs for dermal administration: A review, Current Medical Mycology, 7(1), 71-78 (2021). Doi: https://doi.org/10.18502/cmm.7.1.6247
B. Das, K.A. Nayak, S. Mallick, Chapter 7: Transferosomes: a novel nanovesicular approach for drug delivery, en: A.K. Nayak, M.S. Hasnain, T.M. Aminabhavi, V.P. Torchilin (editores), Systems of Nanovesicular Drug Delivery, Academic Press, 2022, pp. 103-114. Doi: https://doi.org/10.1016/B978-0-323-91864-0.00022-X
M.K. Bhalaria, S. Naik, A.N. Misra, Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases, Indian Journal of Experimental Biology, 47(5), 368-375 (2009). URL: https://nopr.niscair.res.in/bitstream/123456789/4209/1/IJEB%2047%285%29%20368-375.pdf
M. Farooq, F. Usman, S. Zaib, S.H. Shah, Q.A. Jamil, F.A. Sheikh, A. Khan, S. Rabea, S.A.A. Hagras, G.E.-S. Batiha, et al., Transethosomes for enhancing antifungal and antileishmanial activity, Molecules, 27(10), 3347 (2022). Doi: https://doi.org/10.3390/molecules27103347
M. Osanloo, S. Assadpour, A. Mehravaran, M. Abastabar, J. Akhtari, Niosome- loaded antifungal drugs as an effective nanocarrier system: A mini review, Current Medical Mycology, 4(4), 31-36 (2018). Doi: https://doi.org/10.18502/cmm.4.4.384
S. Wu, W. Guo, B. Li, H. Zhou, H. Meng, J. Sun, R. Li, D. Guo, X. Zhang, R. Li, W. Qu, Progress of polymer-based strategies in fungal disease management: Designed for different roles, Frontiers in Cellular and Infection Microbiology, 13, 1142029 (2023). Doi: https://doi.org/10.3389/fcimb.2023.1142029
C. Malarkodi, S. Rajeshkumar, K. Paulkumar, M. Vanaja, G. Gnanajobitha, G. Annadurai, Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens, Bioinorganic Chemistry and Applications, 2014, 347167 (2014). Doi: https://doi.org/10.1155/2014/347167
M.K. Gregorio-Jáuregui, J.E. Rivera-Salinas, H. Saade-Caballero, G.R. López- Campos, L.J. Martínez-Hernández, A. Ilina, Las nanopartículas magnéticas y sus múltiples aplicaciones, Universidad Autónoma de Coahuila, México, pp. 397-411. URL: https://ciqa.repositorioinstitucional.mx/jspui/bitstream/1025/494/1/Las%20nanopart%C3%ADculas%20magn%C3%A9ticas%20y%20sus%20m%C3%BAltiples%20aplicaciones.pdf
G.D. Marena, A. Ruiz-Gaitán, V. Garcia-Bustos, M.A. Tormo-Mas, J.M. Pérez- Royo, A. López, P. Bernarbe, M.D. Pérez Ruiz, L. Zaragoza-Macian, C. Vicente- Saez, et al., Nanoemulsion increases the antifungal activity of Amphotericin B against four Candida auris clades: In vitro and in vivo assays, Microorganisms, 11(7), 1626 (2023). Doi: https://doi.org/10.3390/microorganisms110716264
M.L. Andrade-Cuel, L.I. López-López, A. Sáenz-Calindo, Nanotubos de carbono: funcionalización y aplicaciones biológicas, Revista Mexicana de Ciencias Farmacéuticas, 43(3), 9-18 (2012). URL: https://www.scielo.org.mx/pdf/rmcf/v43n3/v43n3a2.pdf
T.D. Mlynarczyk, J. Dlugaszewska, A. Kaluzna-Mlynarczyk, T. Goslinski, Dendrimers against fungi - A state of the art review, Journal of Controlled Release, 330, 599-617 (2021). Doi: https://doi.org/10.1016/j.jconrel.2020.12.021
L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, International Journal of Nanomedicine, 12, 1227-1249 (2017). Doi: https://doi.org/10.2147/IJN.S121956
J.Y. Slavin, J. Asnis, U.O. Hafeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, Journal of Nanobiotechnology, 15, 65 (2017). Doi: https://doi.org/10.1186/s12951-017-0308-z
M. Nagpal, M. Kaur, Nanomaterials for skin antifungal therapy: An updated review, Journal of Applied Pharmaceutical Science, 11(Supp 1), 15-25 (2021). Doi: https://doi.org/10.7324/JAPS.2021.11s102
A.R. Cruz-Luna, H. Cruz-Martínez, A. Vásquez-López, D.I. Medina, Metal nanoparticles as novel antifungal agents for sustainable agriculture: Current advances and future directions, Journal of Fungi, 7(12), 1033 (2021). Doi: https://doi.org/10.3390/jof7121033
M.A. Hady, A.B. Darwish, M.S. Abdel-Aziz, O.M. Sayed, Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective, Colloids and Surfaces B: Interfaces, 211, 112304 (2022). Doi: https://doi.org/10.1016/j.colsurfb.2021.112304
L.A. Buitimea, J.A. Garza-Cervantes, D.Y. Gallegos-Alvarado, M. Osorio- Concepción, J.R. Morones-Ramirez, Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, coccidioidomycosdis, mucormycosis, and candidiasis, Pathogens, 10(10), 1303 (2021). Doi: https://doi.org/10.3390/pathogens10101303
A. Voltan, G. Quindós, K. Alarcón, A.M. Fusco-Almeida, M.J. Mendes- Giannini, M. Chorilli, Fungal diseases: Could nanostructured drug delivery be a novel paradigm for therapy? International Journal of Nanomedicine, 11, 3715- 3730 (2016). Doi: https://doi.org/10.2147/IJN.S93105
Y.N. Slavin, H. Bach, Mechanisms of antifungal properties of metal nanoparticles, Nanomaterials (Basel), 12(24), 4470 (2022). Doi: https://doi.org/10.3390/nano12244470
A.C.O. Souza, A.C. Amaral, Antifungal therapy of systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity, Frontiers in Microbiology, 8, 336 (2017). Doi: https://doi.org/10.3389/fmicb.2017.00336
R.A. Petros, J.M. Desimone, Strategies in the design of nanoparticles for therapeutic applications, Nature Reviews Drug Discovery, 9(8), 615-627 (2010). Doi: https://doi.org/10.1038/nrd2591
N. Lewinski, V. Colvin, R. Drezek, Cytotoxicity of nanoparticles, Small, 4(1), 26-49 (2008). Doi: https://doi.org/10.1002/smll.200700595
A. Zielińska, B. Costa, M.V. Ferreira, D. Miguéis, J.M.S. Louros, A. Durazzo, M. Lucarini, P. Eder, M.V. Chaud, M. Morsink, et al., Nanotoxicology and nanosafety: Safety-by-design and testing at a glance, International Journal of Environmental Research and Public Health, 17(13), 4657 (2020). Doi: https://doi.org/10.3390/ijerph17134657
M. Mogharabi, M. Abdollahi, M.A. Faramarzi, Toxicity of nanomaterials; an undermined issue, DARU Journal of Pharmaceutical Sciences, 22(1), 59 (2014). Doi: https://doi.org/10.1186/s40199-014-0059-4
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Revista Colombiana de Ciencias Químico-Farmacéuticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Department of Pharmacy of the Faculty of Sciences of the National University of Colombia authorizes the photocopy of articles and texts for academic or internal purposes of the institutions, citing the source. The ideas issued by the authors are the express responsibility of these and it does not necessarily reflect the views of this journal.
The entire contents of this journal, except when is identified, are subject to a Creative Commons Attribution License 4.0 adopted by Colombia. Consult the regulation: http://co.creativecommons.org/?page_id=13