Análisis por FTIR y DSC de complejos polielectrolito entre Eudragit® E100 y ácido benzoico como evidencia de hidrólisis de los grupos éster del polímero
FTIR and DSC analysis of polyelectrolyte complexes between Eudragit® E100 and benzoic acid as evidence of hydrolysis of the polymer ester groups
DOI:
https://doi.org/10.15446/rcciquifa.v48n3.84987Keywords:
Eudragit® E100, hidrólisis, ácido benzoico (es)Eudragit® E100, hydrolysis, benzoic acid (en)
Downloads
La obtención de complejos polielectrolito entre el polímero catiónico Eudragit® E100 y moléculas aniónicas, con neutralización adicional de un ácido inorgánico, ha sido una práctica recurrente en el área de investigación de estos sistemas de liberación controlada. En el presente trabajo se buscó estudiar el efecto de la adición del ácido fuerte en el polímero, para ello se llevó a cabo la obtención por evaporación de solvente de diez complejos (de diferente composición entre Eudragit® E100 y ácido benzoico o ácido clorhídrico) y de cuatro ionómeros (sin el activo), a los cuales se les realizó análisis por FTIR y DSC.
Los resultados demostraron la obtención de los respectivos complejos polielectrolito y de los ionómeros; además los espectros de FTIR revelaron la relación directa entre la reacción de hidrólisis de los grupos ésteres del polímero y la proporción de HCl adicionada. Los termogramas, por su parte, evidenciaron la existencia de una reacción en el polielectrolito (PE), la cual se favoreció en aquellas composiciones en las que el proceso de hidrólisis ocurrió en mayor magnitud. El proceso de hidrólisis que se describe en el presente estudio debe tenerse en consideración en las futuras investigaciones en el campo, ya que su ocurrencia podría tener implicaciones en las diversas variables que se evalúan en este tipo de sistemas.
Polyelectrolyte complexes obtention between Eudragit® E100 (cationic polymer) and anionic molecules with additional neutralization of inorganic acids is a common practice in the development of these systems. In the present work the addition of strong acid effect on polymer structure was evaluated through FTIR and DSC analysis of a set of ten complexes with different composition (between Eudragit® E100 and benzoic acid) and four ionomers (without the preservative) obtained by solvent evaporation technique.
Results demonstrated the complexes and ionomers formation. FTIR spectra revealed direct relationship between polymer ester groups hydrolysis reaction and the amount of HCl added. The thermograms, on the other hand, evidenced the existence of a reaction in the polyelectrolyte, which was favored in those compositions with more hydrolysis process. The degradation reaction described in this study should be taken into consideration in future research, since its occurrence could have implications in variables evaluated in this type of systems.
References
Evonik Nutrition and Care GmbH, Technical Information of Eudragit® E100, Eudragit® E PO and Eudragit E® 12,5, Specification and Test Methods of Evonik Industries, 1, 2015.
M.V. Ramírez-Rigo, M.E. Olivera, M. Rubio, R.H. Manzo, Enhanced intestinal permeability and oral bioavailability of enalapril maleate upon complexation with the cationic polymethacrylate Eudragit E100, Eur. J. Pharm. Sci., 55, 1 (2014).
D.A. Quinteros, V.R. Rigo, A.F. Jimenez-Kairuz, M.E. Olivera, R.H. Manzo, D.A. Allemandi, Interaction between a cationic polymethacrylate (Eudragit E100) and anionic drugs, Eur. J. Pharm. Sci., 33, 72 (2008).
R.H. Manzo, A.F. Jimenez-Kairuz, M.E. Olivera, F. Alovero, M.V. Ramírez-Rigo, Thermodynamic and rheological properties of polyelectrolyte systems. En: Polyelectrolytes, Thermodynamics and Rheology, Ed. por P.M Visakh, O. Bayraktar, G.A. Pico, Springer, Nueva York, 2014, pp. 215-226.
M.E. Olivera, R.H. Manzo, F. Alovero, A.F. Jimenez-Kairuz, Polyelectrolyte-drug ionic complexes as nanostructured drug carriers to design solid and liquid oral delivery systems. En: Nanostructures for Oral Medicine, Ed. por E. Andronescu, A. Grumezescu, Elsevier, Amsterdam, 2017, pp. 365-408.
J.D. Villada, Obtención y caracterización estructural por FTIR de los materiales ionoméricos clorhidrato, acetato y formiato de Eudragit E-100 con diferentes grados de ionización, Tesis de grado, Universidad ICESI, Cali, 2015, pp. 36-51.
Y. Baena, L.J. Dallos, R.H. Manzo, L.F. Ponce D ’León, Estandarización de celdas de Franz para la realización de ensayos de liberación de fármacos a partir de complejos con polielectrolitos, Rev. Colomb. Cienc. Quím. Farm., 40, 174 (2011).
S.Y. Lin, H.L. Yu, M.J. Li, Formation of six-membered cyclic anhydrides by thermally induced intramolecular ester condensation in Eudragit E film, Polymer, 40, 3589 (1999).
A.M. Juppo, C. Boissier, C. Khoo, Evaluation of solid dispersion particles prepared with SEDS, Int. J. Pharm., 250, 385 (2003).
S. Hayashi, J. Umemura, Disappearances of COOH infrared bands of benzoic acid, J. Chem. Phys., 60, 2630 (1974).
S. Hayashi, N. Kimura, Infrared spectra and molecular configuration of benzoic Acid, Bull. Inst. Chem. Res. - Kyoto Univ., 44, 335 (1966).
S. Yariv, J.D. Russell, V.C. Farmer, Infrared study of the adsorption of benzoic acid and nitrobenzene in montmorillonite, Isr. J. Chem., 4, 201 (1966).
Y. Baena, R.H. Manzo, L.F. Ponce D’Leon, Preparation and physicochemical characterization of some polyelectrolyte-diclofenac complexes, Vitae, 18, 305 (2011).
M.L. Guzmán, R. H. Manzo, M.E. Olivera, Eudragit E100 as a drug carrier: The remarkable affinity of phosphate ester for dimethylamine, Mol. Pharm., 9, 2424 (2012).
C.H. Salamanca, D.F. Castillo, J.D. Villada, G.R. Rivera, Physicochemical characterization of in situ drug-polymer nanocomplex formed between zwitterionic drug and ionomeric material in aqueous solution, Mater. Sci. Eng. C, 72, 405 (2017).
R.C. Rowe, P.J. Sheskey, S.C. Owen, Handbook of pharmaceutical excipients, 6th ed., American Pharmacists Association and Pharmaceutical Press London, London, 2006.
K. Winter, D. Barton, The thermal decomposition of benzoic acid, Can. J. Chem., 48, 3797 (1970).
A. Kelly, C. Zweben (editors), Comprehensive Composite Materials, Volume 5, Test Methods, Nondestructive evaluation, and Smart materials, Elsevier, 2000, p. 183.
H. Liu, P. Wang, X. Zhang, F. Shen, C.G. Gogos, Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit®E PO solid dispersions, Int. J. Pharm., 383, 161 (2010).
J. Li, I.W. Lee, G.H. Shin, X. Chen, H.J. Park, Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin, Eur. J. Pharm. Biopharm., 94, 322 (2015)
M.R. Jenquin, S.M. Liebowitz, R.E. Sarabia, J.W. McGinity, Physical and chemical factors influencing the release of drugs from acrylic resin films, J. Pharm. Sci., 79, 811 (1989).
C. Wu, J.W. McGinity, Non-traditional plasticization of polymeric films, Int. J. Pharm., 177, 15 (1999).
M.A. Repka, T.G. Gerding, S.L. Repka, J.W. McGinity, Influence of plasticizers and drugs on the physico-mechanical properties of hydropxypropylcellulose films prepared by hot melt extrusion, Drug Dev. Indust. Pharm., 25, 625 (1999).
S. Qi, A. Gryczke, P. Belton, D.Q.M Craig, Characterisation of solid dispersions of paracetamol and Eudragit® E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis, Int. J. Pharm., 354, 158 (2008).
J. Zhang, M. Bunker, A. Parker, C.E. Madden-Smith, N. Patel, C.J. Roberts, The stability of solid dispersions of felodipine in polyvinylpyrrolidone characterized by nanothermal analysis, Int. J. Pharm., 414, 210 (2011).
Mettler Toledo DSC 1 Specifications, Thermal Analysis Excellence - DSC1-STARe System – Differential Scanning Calorimetry for all Requirements, 14, 2011.
P. Tong, L.S. Taylor, G. Zografi, Influence of alkali metal counterions on the glass transition temperature of amorphous indomethacin salts, Pharm. Res., 19, 649 (2002).
ASTM International, Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry, Designation: E1356-08 (Reapproved 2014), developed by Subcommittee: E37.01.
S.Y. Lin, W.T. Cheng, Y.S. Wei, H.L. Lin, DSC-FTIR microspectroscopy used to investigate the heat-induced intramolecular cyclic anhydride formation between Eudragit E and PVA copolymer, Polym. J., 43 577 (2011).
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 Revista Colombiana de Ciencias Químico-Farmacéuticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Department of Pharmacy of the Faculty of Sciences of the National University of Colombia authorizes the photocopy of articles and texts for academic or internal purposes of the institutions, citing the source. The ideas issued by the authors are the express responsibility of these and it does not necessarily reflect the views of this journal.
The entire contents of this journal, except when is identified, are subject to a Creative Commons Attribution License 4.0 adopted by Colombia. Consult the regulation: http://co.creativecommons.org/?page_id=13