Published

2020-05-01

EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology

Inhibidores EGFR y HER2 como tratamientos potenciales en oncología veterinaria

DOI:

https://doi.org/10.15446/rcciquifa.v49n2.89898

Keywords:

Human cancer, veterinary cancer, EGFR, HER2, inhibitor (en)
Cáncer humano, cáncer en veterinaria, EGFR, HER2, inhibidores (es)

Authors

  • Juan Martín Cadena García Universidad de Caldas, Facultad de Ciencias Agropecuarias Departamento de Salud Animal, Calle 65 N.° 26-10, Manizales
  • Carlos Eduardo Giraldo Murillo Universidad de Caldas, Facultad de Ciencias Agropecuarias, Departamento de Salud Animal, Calle 65 N.° 26-10, Manizales
  • Manuela Ramos Jaramillo Universidad de Caldas, Facultad de Ciencias Exactas y Naturales, Calle 65 No 26-10, Manizales

EGFR and HER2 receptors are crucial signaling molecules tyrosine kinase involved in human cancer. Aberrant signaling is associated with a variety of cancers, frequently with poor prognosis. Currently, EGFR and HER2 receptors are being targeted by small molecules, which offer a huge benefit to those patients afflicted by aggressive forms of cancer, improving their prognosis. Both human and canine cancers share molecular, biological, histopathological and clinical similarities, including EGFR and HER2 expression in some forms of cancer. However, despite the use of one tyrosine kinase inhibitor approved to treat canine mastocytoma, canine cancers overexpressed EGFR and HER2 do not yet have targeted therapy, leading to high morbidity and mortality. Targeting EGFR and HER2 receptors in canine cancers using comparative approaches in human cancer could lead to better outcomes.

El receptor de factor de crecimiento epidérmico (Epidermal growth factor receptor, EGFR) y el receptor 2 del factor de crecimiento epidérmico (HER2 epidermal growth factor receptor 2) son moléculas señalizadoras cruciales pertenecientes a la familia de proteínas tirosina quinasa involucradas en el cáncer en humanos. La señalización aberrante de dichos receptores se encuentra asociada con una variedad de tumores, frecuentemente asociados a mal pronóstico. Actualmente, EGFR y HER2 son tratados específicamente a través de pequeñas moléculas inhibidoras, las cuales ofrecen un gran beneficio a aquellos pacientes que padecen formas agresivas de cáncer, y de esta manera su pronóstico mejora. Tanto el cáncer en medicina humana como veterinaria comparte similitudes moleculares, biológicas, histopatológicas y clínicas, las cuales incluyen la expresión tanto de EGFR y HER2 en algunas formas de cáncer. Sin embrago, a pesar del uso de un inhibidor tirosina quinasa aprobado para el manejo del mastocitoma canino los tumores que se caracterizan por la sobreexpresión de EGFR y HER2 aún no cuentan con un inhibidor específico, lo cual conduce a alta morbilidad y mortalidad.

References

V.J. Adams, K.M. Evans, J. Sampson, J.L.N. Wood, Methods and mortality results of a health survey of purebred dogs in the UK, J. Small Anim. Pract., 51(10), 512-524 (2010).

J.M. Fleming, K.E. Creevy, Mortality in North American dogs from 1984 to 2004: An investigation into age-, size-, and breed-related causes of death, J. Vet. Intern. Med., 25(2), 187-198 (2011).

A. Egenvall, A. Nødtvedt, J. Häggström, B. Ström-Holst, L. Möller, B.N. Bonnett, Mortality of life-insured Swedish cats during 1999 –2006: Age, breed, sex, and diagnosis, J. Vet. Intern. Med., 23(6), 1175-1183 (2009).

P. Blume-Jensen, T. Hunter, Oncogenic kinase signalling, Nature, 411, 355-365 (2001).

G.T. Bergkvist, D.A. Yool, Epidermal growth factor receptor as a therapeutic target in veterinary oncology, Vet. Comp. Oncol., 9(2), 81-94 (2011).

M.E. Gray, S. Lee, A.L. Mcdowell, et al., Dual targeting of EGFR and ERBB2 pathways produces a synergistic effect on cancer cell proliferation and migration in vitro, Vet. Comp. Oncol., 15(3), 890-909 (2017).

K. Sakai, S. Maeda, K. Saeki, et al., Anti-tumour effect of lapatinib in canine transitional cell carcinoma cell lines, Vet. Comp. Oncol., 16(4), 642-649 (2018).

R. Roskoski, Jr., The ErbB/HER family of protein-tyrosine kinases and cancer, Pharmacol. Res., 79, 34-74 (2014).

M.A. Lemmon, J. Schlessinger, Cell signaling by receptor tyrosine kinases, Cell, 141(7), 1117-1134 (2010).

A. Citri, Y. Yarden, EGF – ERBB signalling : towards the systems level, Nat. Rev. Mol. Cell Biol., 7, 505-516 (2006).

P. Littlefield, L. Liu, V. Mysore, Y. Shan, D.E. Shaw, N. Jura, Structural analysis of the EGFR /HER3 heterodimer reveals the molecular basis for activating HER3 mutations, Sci. Signal., 7(354), ra114 (2014).

G.T. Bergkvist, D.A. Yool, Epidermal growth factor receptor as a therapeutic target in veterinary oncology, Vet. Comp. Oncol., 9(2), 81-94 (2011).

N.E. Hynes, H.A. Lane, ERBB receptors and cancer: the complexity of targeted inhibitors, Nat. Rev. Cancer, 5(5), 341-354 (2005).

B. Moy, P. Kirkpatrick, S. Kar, P. Goss, Lapatinib, Nat. Rev. Drug Discov., 6(6), 431-432 (2007).

R. Nahta, G.N. Hortobagyi, F.J. Esteva, Growth factor receptors in breast cancer: potential for therapeutic intervention, Oncologist, 8(1), 5-17 (2003).

K. Aertgeerts, R. Skene, J. Yano, et al., Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein, J. Biol. Chem., 286(21), 18756-18765 (2011).

E. Tzahar, H. Waterman, X. Chen, et al., A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor, Mol. Cell. Biol., 16(10), 5276-5287 (1996).

R. Roskoski, Jr., The ErbB/HER receptor protein-tyrosine kinases and cancer, Biochem. Biophys. Res. Commun., 319(1), 1-11 (2004).

R. Ghosh R, A. Narasanna S.E. Wang, et al., Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers, Cancer Res., 71(5), 1871-1882 (2011).

Y. Yarden, M.X. Sliwkowski, Untangling the ErbB signalling network, Nat. Rev. Mol. Cell. Biol., 2(2), 127-137 (2001).

R.B. Jones, A. Gordus, J.A. Krall, G. Macbeath, A quantitative protein interaction network for the ErbB receptors using protein microarrays, Nature, 439, 168-174 (2006).

A.E. Lenferink, R. Pinkas-Kramarski, M.L. van de Poll, et al., Differential endocytic routing of homo‐ and hetero‐dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers, EMBO J., 17(12), 3385-3397 (1998).

J. Baulida, M.H. Kraus, M. Alimandi, P. Paolo, D. Fiore, G. Carpenter, All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired (*), J. Biol. Chem., 271(9), 5251-5257 (1996).

R. Pinkas-kramarski, L. Soussan, H. Waterman, et al., Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions, EMBO J., 15(10), 2452-2467 (1996).

G. Lurje, H.J. Lenz, EGFR signaling and drug discovery, Oncology, 77(6), 400-410 (2009).

T. Bowman, R. Garcia, J. Turkson, R. Jove, STATs in oncogenesis, Oncogene, 19(21), 2474-2488 (2000).

S.P. Soltoff, L.C. Cantley, p120cbl is a cytosolic adapter protein that associates with phosphoinositide 3-kinase in response to epidermal growth factor in PC12 and other cells, J. Biol. Chem., 271(1), 563-567 (1996).

R. Zandi, A.B. Larsen, P. Andersen, M.T. Stockhausen, H.S. Poulsen, Mechanisms for oncogenic activation of the epidermal growth factor receptor, Cell Signal, 19(10), 2013-2023 (2007).

G. Niu, K.L. Wright, M. Huang, et al., Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis, Oncogene, 21, 2000-2008 (2002).

D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144(5), 646-674 (2011).

S. Ménard, S.M. Pupa, M. Campiglio, E. Tagliabue, Biologic and therapeutic role of HER2 in cancer, Oncogene, 22(42), 6570-6578 (2003).

D. Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell, 100(1), 57-70 (2000).

A. Sorkin, L.K. Goh, Endocytosis and intracellular trafficking of ErbBs, Exp. Cell. Res., 315(4), 683-696 (2009).

G. Levkowitz, H. Waterman, E. Zamir, et al., c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination o the epidermal growth factor receptor, Genes Dev., 12, 3663-3674 (1998).

S.J. Rogers, K.J. Harrington, P. Rhys-Evans, P. O-Charoenrat, S.A. Eccles, Biological significance of c-erbB family oncogenes in head and neck cancer, Cancer Metastasis Rev., 24(1), 47-69 (2005).

S.V. Sharma, D.W. Bell, J. Settleman, D.A. Haber, Epidermal growth factor receptor mutations in lung cancer, Nat. Rev. Cancer, 7(3), 169-181 (2007).

M. Mrhalova, J. Plzak, J. Betka, R. Kodet, Epidermal growth factor receptor - its expression and copy numbers of EGFR gene in patients with head and neck squamous cell carcinomas, Neoplasma, 52(4), 338-343 (2005).

B. Kumar, K.G. Cordell, J.S. Lee, et al., Response to therapy and outcomes in oropharyngeal cancer are associated with biomarkers including human papillomavirus, epidermal growth factor receptor, gender, and smoking, Int. J. Radiat. Oncol. Biol. Phys., 69(2 Suppl.), 109-111 (2007).

J.R. Grandis, D.J. Tweardy, Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer, Cancer Res., 53, 3579-3584 (1993).

M. Sibilia, R. Kroismayr, B.M. Lichtenberger, A. Natarajan, M. Hecking, M. Holcmann, The epidermal growth factor receptor: from development to tumorigenesis, Differentiation, 75(9), 770-787 (2007).

R. Terragni, A.C. Gardini, S. Sabattini, et al., EGFR, HER-2 and KRAS in canine gastric epithelial tumors: A potential human model? PLoS One, 9(1), e85388 (2014).

R.J. Higgins, P.J. Dickinson, R.A. Lecouteur, et al., Spontaneous canine gliomas: Overexpression of EGFR, PDGFRα and IGFBP2 demonstrated by tissue microarray immunophenotyping, J. Neurooncol., 98(1), 49-55 (2010).

R. Thomas, S.E. Duke, H.J. Wang, et al., “Putting our heads together”: Insights into genomic conservation between human and canine intracranial tumors, J. Neurooncol., 94(3), 333-349 (2009).

H.K. Gan, A.H. Kaye, R.B. Luwor, The EGFRvIII variant in glioblastoma multiforme, J. Clin. Neurosci., 16(6), 748-754 (2009).

J. Baselga, Why the epidermal growth factor receptor? The rationale for cancer therapy, Oncologist, 7(Suppl. 4), 2-8 (2002).

L. Milas, K.A. Mason, K.K. Ang, Epidermal growth factor receptor and its inhibition in radiotherapy: In vivo findings, Int. J. Radiat. Biol., 79(7), 539-545 (2003).

M. Yan, M. Schwaederle, D. Arguello, HER2 expression status in diverse cancers : review of results, Cancer Metastasis Rev., 34(1), 157-164 (2015).

M.D. Williams, D.B. Roberts, M.S. Kies, L. Mao, R.S. Weber, A.K. El-Naggar, Genetic and expression analysis of HER-2 and EGFR genes in salivary duct carcinoma: Empirical and therapeutic significance, Clin. Cancer Res., 16(8), 2266-2274 (2010).

M. Yan, B.A. Parker, R. Schwab, R. Kurzrock, HER2 aberrations in cancer: Implications for therapy, Cancer Treat. Rev., 40(6), 770-780 (2014).

F. Cappuzzo, L. Bemis, M. Varella-Garcia, HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer, N. Engl. J. Med., 354(24), 2619-2621 (2006).

H. Zhou, R. Randall, A. Brothman, T. Maxwell, C. Coffin, R. Goldsby, Expression in osteosarcoma increases risk of lung metastasis and can be associated with gene amplification, J. Pediatr. Hematol. Oncol., 25(1), 27-32 (2003).

N.J. Mason, J.S. Gnanandarajah, J.B. Engiles, et al., Immunotherapy with a HER2-targeting listeria induces HER2-specific immunity and demonstrates potential therapeutic effects in a phase I trial in canine osteosarcoma, Clin Cancer Res., 22(17), 4380-4390 (2016).

C.A. London, Tyrosine kinase inhibitors in veterinary medicine, Top. Companion Anim. Med., 24(3), 106-112 (2009).

R. Klopfleisch, P. Klose, A.D. Gruber, The combined expression pattern of BMP2, LTBP4, and DERL1 discriminates malignant from benign canine mammary tumors, Vet. Pathol., 47(3), 446-454 (2010).

J.S. Looper, D.E. Malarkey, D. Ruslander, D. Proulx, D.E. Thrall, Epidermal growth factor receptor expression in feline oral squamous cell carcinomas, Vet. Comp. Oncol., 4(1), 33-40 (2006).

Z. Grabarević, M. Corić, S. Seiwerth, et al., Comparative analysis of hepatocellular carcinoma in men and dogs, Coll. Antropol., 33(3), 811-814 (2009).

G. Stoica, H.-T. Kim, D.G. Hall, J.R. Coates, Morphology, immunohistochemistry, and genetic alterations in dog astrocytomas, Vet. Pathol., 41(1), 10-19 (2004).

D.L. Ipsitz, R.J.H. Iggins, G.D.K. Ortz, et al., Glioblastoma multiforme: clinical findings, magnetic resonance imaging , and pathology in five dogs, Vet. Pathol., 40(6), 659-669 (2003).

A.A. Santos, A.J.F. Matos, Advances in the understanding of the clinically relevant genetic pathways and molecular aspects of canine mammary tumours. Part 2: Invasion, angiogenesis, metastasis and therapy, Vet. J., 205(2), 144-153 (2015).

M.I. Carvalho, M.J. Guimarães, I. Pires, et al., EGFR and microvessel density in canine malignant mammary tumours, Res. Vet. Sci., 95(3), 1094-1099 (2013).

A. Gama, F. Gärtner, A. Alves, F. Schmitt, Immunohistochemical expression of Epidermal Growth Factor Receptor (EGFR) in canine mammary tissues, Res. Vet. Sci., 87(3), 432-437 (2009).

N.H. Kim, H.Y. Lim, K.S. Im, J.H. Kim, J.-H. Sur, Identification of triple-negative and basal-like canine mammary carcinomas using four basal markers, J. Comp. Pathol., 148(4), 298-306 (2013).

F. Sassi, C. Benazzi, G. Castellani, G. Sarli, Molecular-based tumour subtypes of canine mammary carcinomas assessed by immunohistochemistry, BMC Vet. Res., 6, 5 (2010).

A. Gama, A. Alves, F. Schmitt, Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: Application of the human classification, Virchows Arch., 453(2), 123-132 (2008).

F.L. Queiroga, M.D. Perez-Alenza, A. González-Gil, G. Silván, L. Peña, J.C. Illera, Quantification of epidermal growth factor receptor (EGFR) in canine mammary tumours by ELISA assay: Clinical and prognostic implications, Vet. Comp. Oncol., 15(2), 383-390 (2017).

J. Martín de las Mulas, J. Ordás, Y. Millán, V. Fernández-Soria, S. Ramón y Cajal, Oncogene HER-2 in canine mammary gland carcinomas: An immunohistochemical and chromogenic in situ hybridization study, Breast Cancer Res. Treat., 80, 363-367 (2003).

F. Millanta, J. Impellizeri, L. McSherry, G. Rocchigiani, L. Aurisicchio, G. Lubas, Overexpression of HER-2 via immunohistochemistry in canine urinary bladder transitional cell carcinoma - A marker of malignancy and possible therapeutic target, Vet. Comp. Oncol., 16(2), 297-300 (2018).

A.F. Flint, L. U’Ren, M.E. Legare, S.J. Withrow, W. Dernell, W.H. Hanneman, Overexpression of the erbB-2 proto-oncogene in canine osteosarcoma cell lines and tumors, Vet. Pathol., 41(3), 291-296 (2004).

H. Murua-Escobar, K. Becker, J. Bullerdiek, I. Nolte, The canine ERBB2 gene maps to a chromosome region frequently affected by aberrations in tumors of the dog (Canis familiaris), Cytogenet. Cell Genet., 94(3-4), 194-195 (2001).

P. Wu, T.E. Nielsen, M.H. Clausen, FDA-approved small-molecule kinase inhibitors, Trends Pharmacol. Sci., 36(7), 422-439 (2015).

R.A. Norman, D. Toader, A.D. Ferguson, Structural approaches to obtain kinase selectivity, Trends Pharmacol. Sci., 33(5), 273-278 (2012).

M.E.M. Noble, J.A. Endicott, L.N. Johnson, Protein kinase inhibitors: insights into drug design from structure, Science, 303(5665), 1800-1805 (2004).

A.J. Tevaarwerk, J.M. Kolesar, Lapatinib: A small-molecule inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases used in the treatment of breast cancer, Clin. Therapeut., 31(Part. 2), 2332-2348 (2009).

E.R. Wood, A.T. Truesdale, O.B. McDonald, et al., A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells, Cancer Res., 64(18), 6652-6659 (2004).

C. Qiu, M.K. Tarrant, S.H. Choi, et al., Mechanism of activation and inhibition of the HER4/ErbB4 kinase, Structure, 16(3), 460-467 (2008).

H.-R. Tsou, E.G. Overbeek-klumpers, W.A. Hallett, et al., Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity, J. Med. Chem., 48(4), 1107-1131 (2005).

S.K. Rabindran, C.M. Discafani, E.C. Rosfjord, et al., Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase, Cancer Res., 64(11), 3958-3965 (2004).

A. Wissner, T.S. Mansour, The vevelopment of HKI-272 and related compounds for the treatment of cancer, Arch. Pharm. Chem. Life Sci., 341(8), 465-477 (2008).

S.R. Tiwari, P. Mishra, J. Abraham, Neratinib, a novel HER2-targeted tyrosine inhibitor, Clin. Breast Cancer, 16(5), 344-348 (2016).

F. Solca, G. Dahl, A. Zoephel, et al., Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker, J. Pharmacol. Exp. Ther., 343(2), 342-350 (2012).

R. Roskoski, Jr., ErbB/HER protein-tyrosine kinases: Structures and small molecule inhibitors, Pharmacol. Res., 87, 42-59 (2014).

S.A. Hurvitz, R. Shatsky, N. Harbeck, Afatinib in the treatment of breast cancer, Expert Opin. Investig. Drugs, 23(7), 1039-1047 (2014).

D. Li, L. Ambrogio, T. Shimamura, et al., BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models, Oncogene, 27(34), 4702-4711 (2008).

Y. Wu, Y. Zhang, M. Wang, et al., Downregulation of HER3 by a novel antisense oligonucleotide, EZN-3920, improves the antitumor activity of EGFR and HER2 tyrosine kinase inhibitors in animal models, Mol. Cancer Ther., 12(4), 427-437 (2013).

A. Canonici, K. Pedersen, B. Browne, M. McDermott, N. Walsh, J. Crown, N. O’Donovan, Effect of afatinib alone and in combination with trastuzumab in HER2-positive breast cancer cell lines, J. Clin. Oncol., 31(15 Suppl.), 632 (2013).

R.L.N. Godone, G.M. Leitão, N.B. Araújo, C.H.M. Castelletti, J.L. Lima-Filho, D.B.G. Martins, Clinical and molecular aspects of breast cancer : Targets and therapies, Biomed. Pharmacother., 106, 14-34 (2018).

X. Zhang, P.N. Munster, New protein kinase inhibitors in breast cancer: afatinib and neratinib, Expert Opin. Pharmacother., 15(9), 1277-1288 (2014).

J.A. Engelman, K. Zejnullahu, C. Gale, et al., PF00299804, an irreversible Pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib, Cancer Res., 67(24), 11924-11933 (2007).

A.J. Gonzales, K.E. Hook, I.W. Althaus, et al., Antitumor activity and pharmacokinetic properties of PF-00299804 , a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor, Mol. Cancer Ther., 7(7), 1880-1889 (2008).

B.-C. Liao, C.-C. Lin, J.C.-H. Yang, Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer, Curr. Opin. Oncol., 27(2), 94-101 (2015).

S.S. Ramalingam, F. Blackhall, M. Krzakowski, et al., Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer, J. Clin. Oncol., 30(27), 3337-3344 (2012).

J. Singer, M. Weichselbaumer, T. Stockner, et al., Comparative oncology: ErbB-1 and ErbB-2 homologues in canine cancer are susceptible to cetuximab and trastuzumab targeting, Mol. Immunol., 50(4), 200-209 (2012).

K. Lindblad-Toh, C.M. Wade, T.S. Mikkelsen, et al., Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature, 438(7069), 803-819 (2005).

M.P. Hoeppner, A. Lundquist, M. Pirun, et al., An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts, PLoS One, 9(3), e91172 (2014).

P. Rivera, H. von Euler, Molecular biological aspects on canine and human mammary tumors, Vet. Pathol., 48(1), 132-146 (2011).

S. Visan, O. Balacescu, I. Berindan-Neagoe, C. Catoi, In vitro comparative models for canine and human breast cancer, Clujul Med., 89(1), 38-49 (2016).

K.S. Borge, S. Nord, P. Van-Loo, et al., Canine mammary tumours are affected by frequent copy number aberrations, Including amplification of MYC and loss of PTEN, PLoS One, 10(5), e0126371 (2015).

F.L. Queiroga, T. Raposo, M.I. Carvalho, J. Prada, I. Pires, Canine mammary tumours as a model to study human breast cancer: most recent findings, In Vivo, 25(3), 455-465 (2011).

C.A. London, A.L. Hannah, R. Zadovoskaya, et al., Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies, Clin. Cancer Res., 9(7), 2755-2768 (2003).

G.S. Papaetis, K.N. Syrigos, Sunitinib: A multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies, BioDrugs, 23(6), 377-389 (2009).

C.A. London, Small molecule inhibitors in veterinary oncology practice, Vet. Clin. North Am., Small Anim. Pract., 44(5), 893-908 (2014).

C. London, T. Mathie, N. Stingle, et al., Preliminary evidence for biologic activity of toceranib phosphate (Palladia®) in solid tumours, Vet. Comp. Oncol., 10(3), 194-205 (2012).

A. Marcinowska, J. Warland, M. Brearley, J. Dobson, A novel approach to treatment of lymphangiosarcoma in a boxer dog, J. Small Anim. Pract., 54(6), 334-337 (2013).

E. Chon, L. McCartan, L.N. Kubicek, D.M. Vail, Safety evaluation of combination toceranib phosphate (Palladia) and piroxicam in tumour-bearing dogs (excluding mast cell tumours): A phase I dose-finding study, Vet. Comp. Oncol., 10(3), 184-193 (2012).

C. Robat, C. London, L. Bunting, et al., Safety evaluation of combination vinblastine and toceranib phosphate (Palladia®) in dogs: A phase I dose-finding study, Vet. Comp. Oncol., 10(3), 174-183 (2012).

K.S. Carlsten, C.A. London, S. Haney, R. Burnett, A.C. Avery, D.H. Thamm, Multicenter prospective trial of hypofractionated radiation treatment, toceranib, and prednisone for measurable canine mast cell tumors, J. Vet. Intern. Med., 26(1), 135-141 (2012).

L. Marconato, G. Bettini, C. Giacoboni, et al., Clinicopathological features and outcome for dogs with mast cell tumors and bone marrow involvement, J. Vet. Intern. Med., 22(4), 1001-1007 (2008).

M. Isotani, N. Ishida, M. Tominaga, et al., Effect of tyrosine kinase inhibition by imatinib mesylate on mast cell tumors in dogs, J. Vet. Intern. Med., 22(4), 985-988 (2008).

O. Yamada, M. Kobayashi, O. Sugisaki, et al., Imatinib elicited a favorable response in a dog with a mast cell tumor carrying a c-kit c.1523A>T mutation via suppression of constitutive KIT activation, Vet. Immunol. Immunopathol., 142(1-2), 101-106 (2011).

How to Cite

APA

Cadena García, J. M., Giraldo Murillo, C. E. and Ramos Jaramillo, M. (2020). EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(2). https://doi.org/10.15446/rcciquifa.v49n2.89898

ACM

[1]
Cadena García, J.M., Giraldo Murillo, C.E. and Ramos Jaramillo, M. 2020. EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology. Revista Colombiana de Ciencias Químico-Farmacéuticas. 49, 2 (May 2020). DOI:https://doi.org/10.15446/rcciquifa.v49n2.89898.

ACS

(1)
Cadena García, J. M.; Giraldo Murillo, C. E.; Ramos Jaramillo, M. EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology. Rev. Colomb. Cienc. Quím. Farm. 2020, 49.

ABNT

CADENA GARCÍA, J. M.; GIRALDO MURILLO, C. E.; RAMOS JARAMILLO, M. EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 49, n. 2, 2020. DOI: 10.15446/rcciquifa.v49n2.89898. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/89898. Acesso em: 16 jul. 2024.

Chicago

Cadena García, Juan Martín, Carlos Eduardo Giraldo Murillo, and Manuela Ramos Jaramillo. 2020. “EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology”. Revista Colombiana De Ciencias Químico-Farmacéuticas 49 (2). https://doi.org/10.15446/rcciquifa.v49n2.89898.

Harvard

Cadena García, J. M., Giraldo Murillo, C. E. and Ramos Jaramillo, M. (2020) “EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology”, Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(2). doi: 10.15446/rcciquifa.v49n2.89898.

IEEE

[1]
J. M. Cadena García, C. E. Giraldo Murillo, and M. Ramos Jaramillo, “EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology”, Rev. Colomb. Cienc. Quím. Farm., vol. 49, no. 2, May 2020.

MLA

Cadena García, J. M., C. E. Giraldo Murillo, and M. Ramos Jaramillo. “EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology”. Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 49, no. 2, May 2020, doi:10.15446/rcciquifa.v49n2.89898.

Turabian

Cadena García, Juan Martín, Carlos Eduardo Giraldo Murillo, and Manuela Ramos Jaramillo. “EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology”. Revista Colombiana de Ciencias Químico-Farmacéuticas 49, no. 2 (May 1, 2020). Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/89898.

Vancouver

1.
Cadena García JM, Giraldo Murillo CE, Ramos Jaramillo M. EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 2020 May 1 [cited 2024 Jul. 16];49(2). Available from: https://revistas.unal.edu.co/index.php/rccquifa/article/view/89898

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Sunjun Jung. (2023). Presumed erlotinib‐induced bilateral corneal ulcers in a dog with lung tumor. Veterinary Ophthalmology, 26(1), p.78. https://doi.org/10.1111/vop.13034.

Dimensions

PlumX

Article abstract page views

374

Downloads

Download data is not yet available.