Published

2020-05-01

Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities

Estudo da degradação forçada e método indicativo da estabilidade por cromatografia líquida para determinação de cloridrato de tirofibana e impurezas sintéticas

DOI:

https://doi.org/10.15446/rcciquifa.v49n2.89926

Keywords:

Degradation products, HPLC, impurities, tirofiban, stability (en)
Produtos de degradação, HPLC, impurezas, tirofibana, estabilidade (pt)

Authors

  • Adriane Lettnin Roll Feijó Post Graduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Uruguaiana, RS
  • Fernanda Macke Hellwig Federal University of Pampa, UNIPAMPA, Itaqui, RS
  • Clésio Soldateli Paim Post Graduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Uruguaiana, RS
  • Marcelo Donadel Malesuik Post Graduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Uruguaiana, RS

This study aimed to develop and validate a stability-indicating liquid chromatography method for the determination of tirofiban hydrochloride and two synthetic impurities (impurity A and impurity C). The method utilizes a RP-18 column (250 mm × 4.6 mm; 5 μm) with the PDA detector for quantitation. A mixture of triethylamine 0.1% (acidified to pH 5.5 with phosphoric acid) and acetonitrile was used as the mobile phase at a flow rate of 1 mL min−1 with gradient elution. The method presented satisfactory linearity, precision, accuracy and robustness, as well as low limits of detection and quantification, which demonstrate sensitivity in the determination of tirofiban and impurities A and C. It was selective for the determination of the drug and impurities analysed, without interference of the degradation products generated under forced conditions, demonstrating the stability-indicating capacity of the proposed method. Tirofiban showed to be practically stable to oxidative (30% H2O2 for 24 h) and thermal (75 ºC for 24 h) conditions, but presented degradation to UVA light and acid hydrolysis, obeying the first order kinetics for both. In this way, it can be used as a stability-indicating method in the quality control of the raw material of tirofiban hydrochloride, as well as of the finished product. The obtained results demonstrate the importance of deepening the studies in this area, in order to guarantee the quality of commercialized pharmaceutical products.

Este estudo teve como objetivo desenvolver e validar método indicativo da estabilidade por cromatografia líquida para determinação de cloridrato de tirofibana e duas impurezas de síntese (impureza A e impureza C). O método utilizou coluna de fase reversa RP-18 (250 mm x 4,6 mm; 5 μm) e detector PDA para quantificação. A fase móvel foi composta por uma mistura de trietilamina 0,1% (acidificada com ácido fosfórico para pH 5,5) e acetonitrila, à vazão de 1 mL/min, no modo gradiente. O método apresentou linearidade, precisão, exatidão, robustez, bem como baixos limites de detecção e quantificação, demonstrando sensibilidade na determinação da tirofibana e impurezas A e C. O método apresentou seletividade na determinação do fármaco e das impurezas, sem interferência dos produtos de degradação gerados na degradação forçada da tirofibana, demonstrando sua capacidade indicativa de estabilidade. O fármaco apresentou-se estável a oxidação (H2O2 30% por 24 h) e a degradação térmica (75 °C por 24 h), mas degradou frente à luz UVA e hidrolise ácida, obedecendo cinética de primeira ordem para ambas. Dessa forma, pode ser utilizado como um método indicativo de estabilidade no controle de qualidade da matéria-prima do cloridrato de tirofibana, bem como no produto acabado. Os resultados obtidos demonstram a importância de aprofundar os estudos na área, com intuito de garantir a qualidade dos produtos farmacêuticos comercializados.

References

M.E.W. Gomes, C. Fabris, J.L.B. Filho, R. Dreher, G.A. Rosito, Antagonistas do receptor plaquetário GPIIb/IIIa, Revista da Associação Médica Brasileira, 46(3), 255-264 (2000).

R.M. Rocha, Glicoproteínas IIIb/IIIa, Revista SOCERJ, 14(1), 34-39 (2001).

S. King, M. Short, C. Harmon, Glycoprotein IIb/IIIa inhibitors: The resurgence of tirofibana, Vascular Pharmacology, 78, 10-16 (2016).

J.Y.L Chung, D. Zhao, S.L. Hughers, E.J.J. Grabowski, A practical synthesis of fibrinogen receptor antagonist MK-383. Selective functionalization of (S)-tyrosine, Tetrahedron, 49(26), 5767-5576 (1993).

M. Sitting, Pharmaceutical Manufacturing Encyclopedia, 3rd ed., William Andrew Publishing, New York, 2007.

C. Barata-Silva, R.A. Hauser-Davis, A.L.O. Silva, J.C. Moreira, Desafios ao controle da qualidade de medicamentos no Brasil, Cadernos de Saúde Coletiva, 25(3), 362-370 (2017).

P.A. Bergquist, W.A. Hunke, R.A. Reed, D. Manas, R.R. Forsyth, J. Cook, M. Holahan, Compatibility of tirofiban HCl with dopamine HCl, famotidine, sodium heparin, lidocaine HCl and potassium chloride during simulated Y-site administration, Journal of Clinical Pharmacy and Therapeutics, 24(2), 125-132 (1999).

P.A. Bergquist, D. Manas, W.A. Hunke, R.A. Reed, Stability and compatibility of tirofiban hydrochloride during simulated Y-site administration with other drugs, American Journal of Health-System Pharmacy, 58(13), 1218-1223 (2001).

M.J. Garabito, L. Jimenez, F.J. Bautista, I. Perez-Rodrigo, Stability of tirofiban hydrochloride in 0.9% sodium chloride injection for 30 days, American Journal Health-System Pharmacy, 58(19), 1850-1852 (2001).

M. Gandhimathi, S.T. Athoti, T.K. Ravi, Three newer methods for the estimation of tirofiban hydrochloride from pharmaceutical formulation, Indo American Journal of Pharmaceutical Research, 3, 9310-9315 (2013).

T. Henriet, P.H. Secrétan, F. Amrani, H. Sadou-Yayé, M. Bernard, A. Solgadi, N. Yagoubi, B. Do, Phototransformation patterns of the antiplatelet drug in aqueous solution, relevant to drug delivery and storage, New Journal Chemistry, 40(2), 1182-1194 (2016).

K.S. Nataraj, S.V.S. Kumar, N.V.V.S. Kalyani, M.B. Duza, Development and validation of a reverse phase high performance liquid chromatographic method for the estimation of tirofiban in pharmaceutical dosage forms, International Journal of Pharmacy and Pharmaceutical Sciences, 5(Suppl. 1), 200-203 (2013).

K.S. Ranjitha, A.L. Rao, Development and validation of new RP-HPLC method for the determination of tirofiban in pharmaceutical formulation, International Journal of Pharmaceutical, Chemical and Biological Sciences, 1, 43-47 (2011).

R.I. El-Bagary, E.F. Elkady, N.A. Farid, N.F. Youssef, Stability study and validated reversed phase liquid chromatographic method for the determination of tirofiban hydrochloride in presence of tyrosine as a process impurity, Journal of the Chilean Chemical Society, 63(2), 3958-3967 (2018).

M. Di Rago, E. Saar, L.N. Rodda, S. Ufus, A. Kotsos, D. Gerostamoulos, O.H. Drummer, Fast targeted analysis of 132 acidic an neutral drugs and poisons in whole blood using LC-MS/MS, Forensic Science International, 243, 35-43, 2014.

J.D. Ellis, E.L. Hand, J.D. Gilbert, Use of LC-MS/MS to cross-validate a radioimmunoassay for the fibrinogen receptor antagonist, Aggrastat (tirofiban hydrochloride) in human plasma, Journal of Pharmaceutical and Biomedical Analysis, 15(5), 561-569 (1997).

R. Oertel, A. Köhler, A. Koster, W. Kirch, Determination of tirofiban in human serum by liquid chromatography–tandem mass spectrometry, Journal of Chromatography B, 805(1), 181-185 (2004).

M. Darkovsaka-Serafimovska, E. Janevik-Ivanovska, Z. Arsova-Sarafinovska, I. Djorgoski, N. Ugresic, Development and validation of reverse phase high performance liquid chromatographic method for determination of tirofiban in serum, International Journal of Pharmacy, 4(4), 115-120 (2014).

M. Darkovsaka-Serafimovska, E. Janevik-Ivanovska, T. Balkanov, N. Ugresic, Development of alternative HPLC method for the determination of tirofiban in rat serum, Macedonian Journal of Chemistry and Chemical Engineering, 35(2), 217-223 (2016).

S. Vickers, A.D. Theoharides, B. Arison, S.K. Balani, D. Cui, C.A. Duncan, J.D. Ellis, L.M. Gorham, S.L. Polsky, T. Prueksaritanont, H.G. Ramjit, D.E. Slaughter, K.P. Vyas, Drug Metabolism and Disposition, 27(11), 1360-1366 (1999).

S. Yang, G. Peiwu, Y. Lin, Z. Zhang, Bioavailability and pharmacokinetic study of tirofibana in rat by liquid chromatography mass spectrometry, Latin American Journal of Pharmacy, 35(1), 44-46 (2016).

L. Ng, G. Lunn, P. Faustino, Organic impurities in drug substance: origin, control, and measurement, In: Analysis of Drug Impurities, Blackwell Publishing, Oxford, 2007.

ICH - International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Guideline on Validation of Analytical Procedure–Methodology Q2 (R1), ICH Steering Committee, Switzerland, 2005.

Aggrastat (Tirofiban Hydrochloride Injection) is manufactured for: AGGRASTAT® (Tirofiban Hydrochloride Injection Premixed and Tirofiban Hydrochloride Injection) Baxter Healthcare Corporation, Deerfield, Illinois USA, 1998, URL: https://www.accessdata.fda.gov/drugsatfda_docs/label/1998/20912lbl.pdf, accessed May 10, 2018.

H.Y. Vander, A. Nijhuis, J. Smeyers-Verbeke, B. Vandeginste, D. Massart, Guidance for robustness/ruggedness tests in method validation, Journal Pharmaceutical and Biomedical Analysis, 24(5-6), 723-753 (2001).

M. Bakshi, S. Sing, Development of validated stability-indicating assay methods – critical review, Journal of Pharmaceutical and Biomedical Analysis, 28(6), 1011-1040 (2002).

J. Ermer, J.H.McB. Miller, Method Validation in Pharmaceutical Analysis. A Guide to Best Practice, Wiley-VCH, Weinheim, 2005.

M. Ribani, C.B.G. Bottoli, C.H. Collins, I.C.S.F. Jardim, L.F.C. Melo, Validação em métodos cromatográficos e eletroforéticos, Química Nova, 27(5), 771-780 (2004).

International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Impurities in New Drug Substances - Q3A (R2), ICH Steering Committee, Switzerland, 2006.

How to Cite

APA

Roll Feijó, A. L., Macke Hellwig, F., Soldateli Paim, C. and Malesuik, M. D. (2020). Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities. Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(2). https://doi.org/10.15446/rcciquifa.v49n2.89926

ACM

[1]
Roll Feijó, A.L., Macke Hellwig, F., Soldateli Paim, C. and Malesuik, M.D. 2020. Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities. Revista Colombiana de Ciencias Químico-Farmacéuticas. 49, 2 (May 2020). DOI:https://doi.org/10.15446/rcciquifa.v49n2.89926.

ACS

(1)
Roll Feijó, A. L.; Macke Hellwig, F.; Soldateli Paim, C.; Malesuik, M. D. Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities. Rev. Colomb. Cienc. Quím. Farm. 2020, 49.

ABNT

ROLL FEIJÓ, A. L.; MACKE HELLWIG, F.; SOLDATELI PAIM, C.; MALESUIK, M. D. Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 49, n. 2, 2020. DOI: 10.15446/rcciquifa.v49n2.89926. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/89926. Acesso em: 22 jan. 2025.

Chicago

Roll Feijó, Adriane Lettnin, Fernanda Macke Hellwig, Clésio Soldateli Paim, and Marcelo Donadel Malesuik. 2020. “Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities”. Revista Colombiana De Ciencias Químico-Farmacéuticas 49 (2). https://doi.org/10.15446/rcciquifa.v49n2.89926.

Harvard

Roll Feijó, A. L., Macke Hellwig, F., Soldateli Paim, C. and Malesuik, M. D. (2020) “Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities”, Revista Colombiana de Ciencias Químico-Farmacéuticas, 49(2). doi: 10.15446/rcciquifa.v49n2.89926.

IEEE

[1]
A. L. Roll Feijó, F. Macke Hellwig, C. Soldateli Paim, and M. D. Malesuik, “Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities”, Rev. Colomb. Cienc. Quím. Farm., vol. 49, no. 2, May 2020.

MLA

Roll Feijó, A. L., F. Macke Hellwig, C. Soldateli Paim, and M. D. Malesuik. “Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities”. Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 49, no. 2, May 2020, doi:10.15446/rcciquifa.v49n2.89926.

Turabian

Roll Feijó, Adriane Lettnin, Fernanda Macke Hellwig, Clésio Soldateli Paim, and Marcelo Donadel Malesuik. “Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities”. Revista Colombiana de Ciencias Químico-Farmacéuticas 49, no. 2 (May 1, 2020). Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/89926.

Vancouver

1.
Roll Feijó AL, Macke Hellwig F, Soldateli Paim C, Malesuik MD. Forced degradation studies and stability-indicating liquid chromatography method for determination of tirofiban hydrochloride and synthetic impurities. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 2020 May 1 [cited 2025 Jan. 22];49(2). Available from: https://revistas.unal.edu.co/index.php/rccquifa/article/view/89926

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

389

Downloads

Download data is not yet available.