Publicado

2024-04-06

Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review

Sales orgánicas como herramienta para la purificación de ingredientes farmacéuticos: revisión bibliográfica

Sais orgânicos como ferramenta para purificação de ingredientes farmacêuticos: revisão bibliográfica

DOI:

https://doi.org/10.15446/rcciquifa.v53n1.112981

Palabras clave:

Pharmaceutical salts, impurity content, salt formation, salt hydrolysis, purification, solubility change, synthesis (en)
Sales farmacéuticas, contenido de impurezas, hidrólisis de sales, purificación, cambio de solubilidad, síntesis (es)
Sais farmacêuticos, teor de impurezas, formação de sal (pt)

Autores/as

  • Juan Carlos Ortiz Lara Sintenovo S.A

Introduction: Medicines aims to improve the health of the population; for this reason, pharmaceutical ingredients with a high purity level are necessary. In this context, the impurity content is one of the premises in the manufacture of the pharmaceutical ingredients; to comply with this parameter several unit operations can be implemented. In this regard, the pharmaceutical salts can be used as an alternative in the purification process to generate pharmaceutical ingredients with a high purity. Purpose: This review will discuss in first instance, the importance of the impurities in the regulated environment (known, unknown impurities, genotoxic, residual solvents, and elemental impurities). Continuing with the basis of the pharmaceutical salts including functional groups that can form salts, basis of generation and hydrolysis and the main characteristic: the change in the solubility properties due to the formation of the ionic bond. This part also includes general references of previous works and compilations. The next part involves two methodological approaches to purify pharmaceutical ingredients. The first approach is based in salt formation extractions followed by salt hydrolysis. The second tactic is based on salt formation and the solubility properties. Results: Some examples will demonstrate the advantages of these tools. One interesting input is the compilation of several synthetic method to form salts, including examples and alternatives for sensitives cases (water, solid form, ion interchange, etc.). Finally, the salt structure determination will be commented on including the main characterization methodologies.

 

Introducción: Los medicamentos tienen como objetivo mejorar la salud de la población; por este motivo, son necesarios ingredientes farmacéuticos con un alto nivel de pureza. En este contexto, el contenido de impurezas es una de las premisas en la fabricación de los ingredientes farmacéuticos; para cumplir con este parámetro se pueden implementar varias operaciones unitarias. Objetivo: En este sentido, las sales farmacéuticas se pueden utilizar como una alternativa en el proceso de purificación para generar ingredientes farmacéuticos con una alta pureza. Esta revisión discutirá en primera instancia la importancia de las impurezas en el ambiente regulado (impurezas conocidas, desconocidas, genotóxicas, solventes residuales e impurezas elementales). Continuando con la base de las sales farmacéuticas incluyendo los grupos funcionales que pueden formar sales, base de generación e hidrólisis y la característica principal: el cambio en las propiedades de solubilidad debido a la formación del enlace iónico. Esta parte también incluye referencias generales de trabajos y compilaciones anteriores. La siguiente parte involucra dos enfoques metodológicos para purificar ingredientes farmacéuticos. El primer enfoque se basa en extracciones de formación de sales seguidas de hidrólisis de sales. La segunda táctica se basa en la formación de sales y las propiedades de solubilidad. Resultados: Algunos ejemplos demostrarán las ventajas de estas herramientas. Un aporte interesante es la recopilación de varios métodos sintéticos para formar sales, incluyendo ejemplos y alternativas para casos sensibles (agua, forma sólida, intercambio iónico, etc.). Finalmente, se comentará la determinación de la estructura de la sal incluyendo las principales metodologías de caracterización.

Introdução: Os medicamentos visam melhorar a saúde da população; por esta razão, são necessários ingredientes farmacêuticos com alto nível de pureza. Neste contexto, o teor de impurezas é uma das premissas na fabricação dos insumos farmacêuticos; para cumprir este parâmetro diversas operações unitárias podem ser implementadas. Nesse sentido, os sais farmacêuticos podem ser utilizados como alternativa no processo de purificação para gerar ingredientes farmacêuticos com alta pureza. Objetivo: Esta revisão discutirá, em primeira instância, a importância das impurezas no ambiente regulamentado (impurezas conhecidas, desconhecidas, genotóxicas, solventes residuais e impurezas elementares). Continuando com a base dos sais farmacêuticos incluindo grupos funcionais que podem formar sais, base de geração e hidrólise e a principal característica: a alteração nas propriedades de solubilidade devido à formação da ligação iônica. Esta parte também inclui referências gerais de trabalhos e compilações anteriores. A próxima parte envolve duas abordagens metodológicas para purificar ingredientes farmacêuticos. A primeira abordagem é baseada em extrações de formação de sal seguidas de hidrólise de sal. A segunda tática é baseada na formação de sal e nas propriedades de solubilidade. Alguns exemplos demonstrarão as vantagens destas ferramentas. Resultados: Uma contribuição interessante é a compilação de diversos métodos sintéticos para formação de sais, incluindo exemplos e alternativas para casos sensíveis (água, forma sólida, intercâmbio iônico, etc.). Por fim, será comentada a determinação da estrutura do sal incluindo as principais metodologias de caracterização.

 

Referencias

C.G. Wermuth, P.H. Stahl, Introduction, in: P.H. Stahl, C.G. Wermuth (editors),Handbook of Pharmaceutical Salts: Properties, Selection and Use, Wiley-VCH, Zurich, 2002, pp. 1–7.

The International Council for Harmonisation of Technical Requirements for Pharmaceutical for Human Use, ICH Harmonised Tripartite Guideline: Impurities in New Drug Substances Q3A(R2), 2006. URL: https://database.ich.org/sites/default/files/Q3A_R2__Guideline.pdf, accessed September 5, 2023.

The International Council for Harmonisation of Technical Requirements for Pharmaceutical for Human Use, ICH Harmonised Guideline: Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk M7(R1), 2017. URL: https://database.ich.org/sites/default/files/M7_R1_Guideline.pdf, accessed September 5, 2023.

The International Council for Harmonisation of Technical Requirements for Pharmaceutical for Human Use, ICH Harmonised Guideline: Impurities: Guideline for residual solvents Q3C(R6), 2016. URL: https://database.ich.org/sites/default/files/Q3C-R6_Guideline_ErrorCorrection_2019_0410_0.pdf, accessed September 5, 2023.

The International Council for Harmonisation of Technical Requirements for Pharmaceutical for Human Use, ICH Harmonised Guideline: Guideline for elemental impurities Q3D, 2019. URL: https://database.ich.org/sites/default/files/Q3D-R1EWG_Document_Step4_Guideline_2019_0322.pdf, accessed September 5, 2023.

G.N. Anderson, Optimization process by minimizing impurities, in: G.N. Anderson (editor), Practical Process Research and Development: A Guide for Organic Chemists, 2nd ed., Elsevier, Inc., 2012, pp. 237–260. URL: https://www.sciencedirect.com/book/9780123865373/practical-process-research-and- development

G.N. Anderson, Work up, in: G.N. Anderson (editor), Practical Process Research and Development: A Guide for Organic Chemists, 2nd ed., Elsevier, Inc., 2012, pp. 289–327. URL: https://www.sciencedirect.com/book/9780123865373/practical-process-research-and-development

D.V. Bhalani, B. Nutan, A. Kumar, A.K.S. Chandel, Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics, Biomedicines, 10(9), 2055 (2022). Doi: https://doi.org/10.3390/biomedicines10092055

E. Nelson, Comparative dissolution rates of weak acid and their sodium salts, Journal of the American Pharmaceutical Association: Scientific Edition, 47(4), 297–299 (1958). Doi: https://doi.org/10.1002/jps.3030470422

K. Lokesh, A. Amin, A.K. Bansal, Salt selection in drug development, Pharm- Tech, 32(3), 128–145 (2008). URL: https://www.pharmtech.com/view/salt-selection- drug-development

P. Makary, Principles of salt formation, Pharmaceutical and Biosciences Journal, 2(4), 1-4 (2014). Doi: https://doi.org/10.20510/ukjpb/2/i4/91101

B. Sarma, J. Chen, H.-Y. Hsi, A.S. Myerson, Solid forms of pharmaceuticals: Polymorphs, salts and cocrystals, Korean Journal of Chemical Engineering, 28(2), 315–322 (2011). Doi: https://doi.org/10.1007/s11814-010-0520-0

A. Becker, Pharmaceutical salts of small molecule drugs: Opportunities and challenges, European Pharmaceutical Review, 19(5), 70–74 (2014). URL: https://www.europeanpharmaceuticalreview.com/article/27753/pharmaceutical-salts- -small-molecule-drugs/

A.T.M. Serajuddin, Salt formation to improve drug solubility, Advanced Drug Delivery Reviews, 59(7), 603–616 (2007). Doi: https://doi.org/10.1016/j.addr.2007.05.010

J.C. Ortiz-Lara, A. Balderrábano-López, Importancia de las sales orgánicas en la industria farmacéutica, Revista Mexicana de Ciencias Farmacéuticas, 48(1), 18–42 (2017). URL: https://www.redalyc.org/pdf/579/57956614003.pdf

B. Kratochvíl, Solid forms of pharmaceutical molecules, in: J. Šesták, J.J. Mareš, P. Hubík (editors), Glassy, Amorphous and Nano-Crystalline Materials. Thermal Physics, Analysis, Structure and Properties, Springer, Dordrecht, 2011, pp. 129– 140. Doi: https://doi.org/10.1007/978-90-481-2882-2

S. Gaisford, M. Saunders, Salt selection, in: Essentials of Pharmaceutical Preformulation, Wiley Blackwell, 2012, p. 99. Doi: https://doi.org/10.1002/9781118423226.ch6

W.-Q. Tong, Salt screening and Selection: New challenges and considerations in the modern pharmaceutical research and development paradigm, in: Y. Qiu, Y. Chen, G.G.Z. Zhang (editors), Developing Solid Oral Dosage Forms. Pharmaceutical Theory and Practice, Academic Press, 2009, pp. 75–86. Doi: https://doi.org/10.1016/B978-0-444-53242-8.00004-7

R. Banerjee, P.M. Bhatt, N.V. Ravindra, G.R. Desiraju, Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubility, Crystal Growth & Design, 5(6), 2299–2309 (2005). Doi: https://doi.org/10.1021/cg050125l

W.-Q.T. Tong, G. Whitesell, In situ salt screening - A useful technique for discovery support preformulation studies, Pharmaceutical Development and Technology, 3(2), 215–223 (1998). Doi: https://doi.org/10.3109/10837459809028498

A.M. Hyde, S.L. Zultanski, J.H. Waldman, Y.-L. Zhong, M. Shevlin, F. Peng, General principles for salting-out informed by the Hofmeister series, Organic Process Research & Development, 21(9), 1355–1370 (2017). Doi: https://doi.org/10.1021/acs.oprd.7b00197

F. Pfankuch, H. Rettig, P.H. Stahl, Biological effect of the drug salt form, in: P.H. Stahl, C. Wermuth (editors), Handbook of Pharmaceutical Salts. Properties, Selection and Use, Wiley VCH, Zurich, 2011, p. 126.

P.D. Elder, D.J. Snodin, Drug substances presented as sulfonic acid salts: Overview of utility, safety and regulation, Journal of Pharmacy and Pharmacology, 61(3), 269–278 (2009). Doi: https://doi.org/10.1211/jpp.61.03.0001

D.J. Snodin, Elusive impurities-evidence versus hypothesis. Technical and regulatory update on alkyl sulfonates acid salts, Organic Process Research & Development, 23(5), 695–710 (2019). Doi: https://doi.org/10.1021/acs.oprd.8b00397

G.S. Paulekuhn, J.F. Dressman, C. Saal, Trends in active pharmaceutical ingredient salt selection based on analysis of the Orange book database, Journal of Medicinal Chemistry, 50(26), 6665–6672 (2007). Doi: https://doi.org/10.1021/jm701032y

The United Stated Food Drug Administration, Generally recognized as safe (GRAS), 2019. URL: https://www.fda.gov/food/ingredientspackaginglabeling/gras/, accessed September 5, 2023.

A. Tilborg, B. Norberg, J. Wouters, Pharmaceutical salts and cocrystals involving amino acids: A brief structural overview of the state-of-art, European Journal of Medicinal Chemistry, 74, 411–426 (2014). Doi: https://doi.org/10.1016/j.ejmech.2013.11.045

C. Saal, A. Becker, Pharmaceutical salts: A summary on doses of salts formers from the Orange Book, European Journal of Pharmaceutical Sciences, 49(4), 614–623 (2013). Doi: https://doi.org/10.1016/j.ejps.2013.05.026

S.S. Bharate, Carboxylic acid counterions in FDA-approved pharmaceutical salts, Pharmaceutical Research, 38(8), 1307–1326 (2021). Doi: https://doi.org/10.1007/s11095-021-03080-2

D. Gupta, D. Bhatia, V. Dave, V. Sutariya, S.V. Gupta, Salts of therapeutic agents: Chemical, physicochemical and biological considerations, Molecules, 23(7), 1719 (2018). Doi: https://doi.org/10.3390/molecules23071719

K. Fujinuma, Y. Ishii, Y. Yashihashi, E. Yonemochi, K. Sugano, Triboelectrification of active pharmaceutical ingredients: weak acids and their salts, International Journal of Pharmaceutics, 493(1-2), 434–438 (2015). Doi: https://doi.org/10.1016/j.ijpharm.2015.08.008

S. Sangwan, T. Panda, R. Thiamattan, S.K. Dewan, R.K. Tapper, Novel salts of sunitinib an anticancer drug with improved solubility, International Research Journal of Pure and Applied Chemistry, 5(4), 352–365 (2015). Doi: https://doi.org/10.9734/irjpac/2015/13578

C.P. Ley, M.H. Yates, Purification of 2,4-dichlorobenzoic acid, Organic Process Research & Development, 12(1), 120–124 (2008). Doi: https://doi.org/10.1021/op7001547

M.S. Anson, J.P. Graham, A.J. Roberts, Development of a fully telescoped synthesis of the S1P1 agonist, Organic Process Research & Development, 15(3), 649– 659 (2011). Doi: https://doi.org/10.1021/op2000095

P.L. Lindberg, M.S. Von Unge, Compositions, US Patent 5,714,504, Example 3, 1998. URL: https://patentimages.storage.googleapis.com/30/ce/9/ 1c3210d22368a1/US5714504.pdf

N.C. Niphade, A.C. Mali, B.S. Pandit, K.M. Jagtap, S.A. Jadhav, M.N. Jachak, V.T Mathad, An improved and single pot process for the production of quetiapine hemifumarate substantially free from potential impurities, Organic Process Research & Development, 13(4), 792–797 (2009). Doi: https://doi.org/10.1021/op900097q

P.K. Bathini, V.R. Kandula, P.R. Gaddameedhi, An improved synthesis of raloxifene hydrochloride: A selective estrogen receptor modulator, Heteroletters, 4(4), 515–518 (2014). URL: https://www.heteroletters.org/issue44/Paper-5.pdf

S.R. Madasu, N.A. Vekariya, H. Velladurai, A. Islam, P.D. Sanasi, R. B. Korupolu, Improved process for preparation of gemfibrozil, an antihypolipidemic, Organic Process Research & Development, 17(7), 963–966 (2013). Doi: https://doi.org/10.1021/op400034f

M. Saravanan, B. Satyanarayana, P.P. Reddy, An improved and impurity-free large- scale synthesis of venlafaxine hydrochloride, Organic Process Research & Development, 15(6), 1392–1395 (2011). Doi: https://doi.org/10.1021/op200221y

G.N. Trinadhachari, A.G. Kamat, B.V. Balaji, K.J. Probahar, K.M. Naidu, K.R. Babu, P. D. Sanasi, An improved process for the preparation of highly pure solifenacin succinate via resolution through diastereomeric crystallization, Organic Process Research & Development, 18(8), 934–940 (2014). Doi: https://doi.org/10.1021/op500083y

P. Macharla, K.C. Akula, G. Varanasi, R. Bandichhor, M.R. Ghanta, An efficient and telescopic process for synthesis of saxagliptin hydrochloride, Oriental Journal of Chemistry, 30(1), 291–297 (2014). Doi: http://doi.org/10.13005/ojc/300137

A.C. Mali, S.S. Ippar, M.B. Bodke, N.S. Patil, V.T. Mathad, An improved and efficient process for the production of Dronedarone hydrochloride, an antiarrhytmia drug, Organic Process Research & Development, 17(5), 863–868 (2013). Doi: https://doi.org/10.1021/op400008e

A. Halama, J. Jirman, O. Boušková, P. Gibala, K. Jarrah, Improved process for the preparation of Montelukast: development of an efficient synthesis, identification of critical impurities and degradants, Organic Process Research & Development, 14(2), 425–431 (2010). Doi: https://doi.org/10.1021/op900311z

L.R. Madivada, R.R. Anumala, G. Gilla, M. Kagga, R. Bandichhor, An efficient and large scale synthesis of Clopidogrel: Antiplatelet drug, Der Pharma Chemica, 4(1), 479–488 (2012). URL: https://www.derpharmachemica.com/pharma-chemica/an-efficient-and-large-scale-synthesis-of-clopidogrel-antiplatelet- drug.pdf

S. Lee, C. Hoff, Large scale aspects of salt formation: Processing of intermediate and final products, in: P.H. Stahl, C. Wermuth (editors), Handbook of Pharmaceutical Salts. Properties, Selection and Use, Wiley VCH, Germany, 2011, p. 191–219.

D. Zhou, Y. Qiu, Understanding drug properties in formulation and process design of solid oral products, Journal of Validation Technology, 74–84 (2010).

T.D. Gross, K. Schaab, M. Ouellete, S. Zook, J.P. Reddy, A. Shurtleff, A.I. Sacaan, T. Alebic-Kolbah, H. Bozigian, An approach to early-phase salt selection: Application to NBI-75043, Organic Process Research & Development, 11(3), 365–377 (2007). Doi: https://doi.org/10.1021/op060221a

A. Fernández-Casares, W.M. Nap, G.T. Figás, P. Huizenga, R. Groot, M. Hoffman, An evaluation of salt screening methodologies, Journal of Pharmacy and Pharmacology, 67(6), 812–822 (2015). Doi: https://doi.org/10.1111/jphp.12377

R. Keltjens, Stable salts of olanzapine, US Patent 7,459,449 B2, 2008. URL: https://patentimages.storage.googleapis.com/ea/d1/b1/46e034280e3add/US7459449.pdf

J.F. Remenar, J.M. MacPhee, B.K. Larson, V.A. Tyagi, J.H. Ho, D.A. Mellroy, M.B. Hickey, P.B. Shaw, O. Almarsson, Salt selection and simultaneous polymorphism assessment via high-throughput crystallization: The sertraline case, Organic Process Research & Development, 7(6), 990–996 (2003). Doi: https://doi.org/10.1021/op034115+

J.R. Vyas, V.S.V. Nidadavolu, D.H. Shah, Ropivacaine hydrochloride anhydrate and the preparation thereof, US Patent Application Publication US 2009/0187024A1, 2009. URL: https://patentimages.storage.googleapis. com/18/f8/17/b32f14c7ec35ef/US20090187024A1.pdf

S. Ninkovic, J.F. Braganza, M.R. Collins, J.C. Kath, H. Li, D.T. Ritchter, 6 Substituted 2-heterocyclyamino pyrazine compounds as CHK-1 inhibitors, WO 2010/016005 A1, 2010. URL: https://patentimages.storage.googleapis. com/3b/34/71/be6e7ef8fe076e/WO2010016005A1.pdf

N. Hashimoto, H. Yasuda, M. Hayashi, Y. Tanabe, Aza Diels Alder reaction of methyl 2- [(R)-1-phenylethyl] iminoethanoate with cyclopentadiene using practical and environmentally friendly biphasic solvent system, Organic Process Research & Development, 9(1), 105–109 (2005). Doi: https://doi.org/10.1021/op049828m

K.M. Allan, S. Fujimori, L.V. Heumann, G.M. Huynh, K.A. Keaton, C.M. Levins, G.R. Pamulapati, B.J. Roberts, K. Sarma, M.G. Teresk, X. Wang, S.A. Wolckenhauer, Process for preparing antiviral compounds, WO 2015/191437 A1, 2015. URL: https://patentimages.storage.googleapis.com/32/cc/bf/8e- 4392ba15f1e8/WO2015191437A1.pdf

A. Nudelman, Y. Bechor, E. Falb, B. Fischer, A.W. Barry, A. Nudelman, Acetyl chloride-methanol as a convenient reagent for: a) quantitative formation of amine hydrochlorides b) carboxylate ester formation c) mild removal of N-t-Boc- protective group, Synthetic Communications, 28(3), 471–474 (1998). Doi: https://doi.org/10.1080/00397919808005101

D.R. Choi, J.K. Lim, J.U. Choi, D.H. Shin, S.H. Kim, D.Y. Won, J.H. Kim, J.C. Roh, An improved manufacturing method of zabofloxacin. WO 2015/178663, 2015. URL: https://patentimages.storage.googleapis.com/79/30/fb/06e158c- 14f0f8f/WO2015178663A1.pdf

S. Sripathi, R.R. Bojja, V.R. Karnati, V.V.N.K.V.P. Raju, M.D. Khunt, An improved synthesis of antiulcerative drug Tenatoprazole, Organic Process Research & Development, 13(4), 804–806 (2009). Doi: https://doi.org/10.1021/op800173u

R. Chavakula, C.J.S. Saladi, N.R. Mutyala, V.R. Maddala, R.K. Babu, Industrially viable demethylation reaction in the synthesis of raloxifene hydrochloride, Organic Chemistry: An Indian Journal, 14(13), 128 (2018). URL: https://www. tsijournals.com/articles/industrially-viable-demethylation-reaction-in-synthesis- of-raloxifene-hydrochloride.pdf

Y. Tao, D.W. Widlicka, P.D. Hill, M. Couturier, G.R. Young, A scalable synthesis of CE-157119 HCl salt, and SRI/5HT2A antagonist, Organic Process Research & Development, 16(11), 1805–1810 (2012). Doi: https://doi.org/10.1021/op3002273

D.R. Mowrey, J.J. Reif, K.L. Milkiewicz, S.P. Allwein, Development of a novel process for the kilogram-scale synthesis of spiro[2,3-d][1,3]oxazine-4,4´-piperidine]- 2-one, Organic Process Research & Development, 22(9), 1236–1240 (2018). Doi: https://doi.org/10.1021/acs.oprd.8b00202

B. Toker, S. Merey, Process for the preparation of magnesium salt of omeprazole, WO 2005/082888 A1, 2005. URL: https://patentimages.storage.googleapis. com/5d/24/cb/09068c1cda450b/WO2005082888A1.pdf

S.V.N. Raju, K. Purandhar, P.P. Reddy, G.M. Reddy, L.A. Reddy, K.S. Reddy, K. Sreenath, K. Mukkanti, G.S. Reddy, Preparation of optically pure Esomeprazole and its related salt, Organic Process Research & Development, 10(1), 33–35 (2006). Doi: https://doi.org/10.1021/op049779d

C.R. Elati, P.J. Wankawala, S.R. Chalamala, N.G. Kolla, S. Gangula, H. Vurimidi, S. Venkataraman, V.T. Mathad, Polymorphic study of Donopezil hydrobromide, Indian Journal of Chemistry -Section B, 44(6), 1231–1235 (2005). URL: https://nopr.niscair.res.in/bitstream/123456789/9114/1/IJCB%20 44B%286%29%201231-1235.pdf

W. Du, Q. Yin, J. Gong, Y. Bao, X. Zhang, X. Sun, S. Ding, C. Xie, M. Zhang, H. Hao, Effects of solvent on polymorph formation and nucleation of Prasugrel Hydrochloride, Crystal Growth & Design, 14(9), 4519-4525 (2014). Doi: https://doi.org/10.1021/cg5006067

B.P. Chekal, J. Ewers, S.M. Guinness, N.D. Ide, K.R. Leeman, R.J. Post, A.M. Rane, K. Sutherland, K. Wang, M. Webster, M.G.J. Withbroe, J. Draper, D. Lynch, M. McAuliffe, J. Keane, Palbociclib commercial manufacturing process development. Part III. Deprotection followed by crystallization for API particle control, Organic Process Research & Development, 20(7), 1217–1226 (2016). Doi: https://doi.org/10.1021/acs.oprd.6b00071

H.S.P. Chawla, A.M. Patel, A.S. Chowdhary, V.P. Joshi, M.P. Patel, Process for the manufacture of montelukast sodium, US Patent Application Publication US 2009/0182148 A1, 2009. URL: https://patentimages.storage.googleapis. com/18/c9/d1/cff81ef1807d09/US20090281323A1.pdf

A. Halama, J. Jirman, O. Bouskova, P. Gibala, K. Jarrah, Improved process for the preparation of Montelukast: development of an efficient synthesis, identification of critical impurities and degradants, Organic Process Research & Development, 14(2), 425–431 (2010). Doi: https://doi.org/10.1021/op900311z

H. Ren, C.A. Strulson, G. Humprey, R. Xiang, G. Li, D.R. Gauthier, K. Maloney, Potassium isopropyl xanthate (IX): an ultra–efficient palladium scavenger, Green Chemistry, 19, 4002–4006 (2017). Doi: https://doi.org/10.1039/C7GC01765K

T. Wang, L.-D. Du, D.-j. Wan, X. Li, X.-Z. Chen, G.-F. Wu, Use of lipase catalytic resolution in the preparation of ethyl (2S,5R)-5-((Benzyloxy)amino)piperidine- 2-carboxylate, a key intermediate of the B-lactamase inhibitor Avibactam, Organic Process Research & Development, 22(12), 1738–1744 (2018). Doi: https://doi.org/10.1021/acs.oprd.8b00173

M.M.A. El Azziz, A.G. Melad, A.S. Ashour, Grindstone neutralization reaction for the preparation of various salts of carboxylic acids, Bioorganic & Organic Chemistry, 3(2), 31–36 (2019). URL: https://medcraveonline.com/MOJBOC/MOJBOC-03-00095.pdf

B.M. Collman, J.M. Miller, C. Seadeek, J.A. Stambek, A.C. Blackburn, Comparison of a rational vs high throughput approach for rapid salt screening and selection, Drug Development and Industrial Pharmacy, 39(1), 29–38 (2013). Doi: https://doi.org/10.3109/03639045.2012.656272

X. Linghu, N. Wong, H. Iding, V. Jost, H. Zhang, S.G. Koenig, C.G. Sowell, F. Gosselin, Development of a practical synthesis of ERK inhibitor GDC-0994, Organic Process Research & Development, 21(3), 387–398 (2017). Doi: https://doi.org/10.1021/acs.oprd.7b00006

X. Shi, H. Chang, M. Grohmann, W.F. Kiesman, D.-l.A. Kwok, Process development of an N-benzylated chloropurine at the kilogram scale, Organic Process Research & Development, 19(3), 437–443 (2015). Doi: https://doi.org/10.1021/op5003903

C.M. Brandel, J.W.B. Cooke, R.A.J. Horan, F.P. Mallet, D.R. Stevens, Optimization of the preparation of (R)-3,5-bis(trifluoromethyl)-α-methyl-N-methylbenzylamine L-(-)-malic acid salt through classical resolution, Organic Process Research & Development, 19(12), 1954–1965 (2015). Doi: https://doi.org/10.1021/acs.oprd.5b00283

T.A. Martinot, B.C. Austad, A. Coté, K.M. Depew, D. Genov, L. Grenier, J. Helble, A. Lescarbeiu, S. Nair, M. Trudeau, P. White, L.-N. Yu, A design of experiments approach to a robust final deprotection and reactive crystallization of IPI-926, a novel hedgehog pathway inhibitor, Organic Process Research & Development, 19(11), 1693–1702 (2015). Doi: https://doi.org/10.1021/acs. oprd.5b00214

M.S.H. Mithou, S. Economidou, V. Trivedi. S. Bhatt, D. Douroumis, Advanced methodologies for pharmaceutical salt synthesis, Crystal Growth & Design, 21(2), 1358–1374 (2021). Doi: https://doi.org/10.1021/acs.cgd.0c01427

R. Hilfiker, Relevance of solid–state properties for pharmaceutical products, in: R. Hilfiker (editor), Polymorphism in the Pharmaceutical Industry, Wiley-VCH, Germany, 2006. Ch. 1, p 2.

D. Giron, Characterization of salts of drug substances, Journal of Thermal Analysis and Calorimetry, 73(2), 441–457 (2003). Doi: https://doi.org/10.1023/A:1025461625782

G. Bruni, M. Maietta, L. Maggi, M. Bini, D. Capsoni, S. Ferrari, M. Boiocchi, V. Berbenni, C. Milanese, A. Marini, Pherphenazine-fumaric acid salts with improved solubility: preparation physico-chemical characterization and in vitro dissolution, CrystEngComm, 14, 6035–6044 (2012). Doi: https://doi.org/10.1039/C2CE25846C

Cómo citar

APA

Ortiz Lara, J. C. (2024). Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review. Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(1). https://doi.org/10.15446/rcciquifa.v53n1.112981

ACM

[1]
Ortiz Lara, J.C. 2024. Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review. Revista Colombiana de Ciencias Químico-Farmacéuticas. 53, 1 (abr. 2024). DOI:https://doi.org/10.15446/rcciquifa.v53n1.112981.

ACS

(1)
Ortiz Lara, J. C. Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review. Rev. Colomb. Cienc. Quím. Farm. 2024, 53.

ABNT

ORTIZ LARA, J. C. Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 53, n. 1, 2024. DOI: 10.15446/rcciquifa.v53n1.112981. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/112981. Acesso em: 22 ene. 2025.

Chicago

Ortiz Lara, Juan Carlos. 2024. «Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review». Revista Colombiana De Ciencias Químico-Farmacéuticas 53 (1). https://doi.org/10.15446/rcciquifa.v53n1.112981.

Harvard

Ortiz Lara, J. C. (2024) «Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review», Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(1). doi: 10.15446/rcciquifa.v53n1.112981.

IEEE

[1]
J. C. Ortiz Lara, «Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review», Rev. Colomb. Cienc. Quím. Farm., vol. 53, n.º 1, abr. 2024.

MLA

Ortiz Lara, J. C. «Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 53, n.º 1, abril de 2024, doi:10.15446/rcciquifa.v53n1.112981.

Turabian

Ortiz Lara, Juan Carlos. «Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review». Revista Colombiana de Ciencias Químico-Farmacéuticas 53, no. 1 (abril 6, 2024). Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/rccquifa/article/view/112981.

Vancouver

1.
Ortiz Lara JC. Organic salts as a tool for pharmaceutical ingredient purification: Bibliographic review. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 6 de abril de 2024 [citado 22 de enero de 2025];53(1). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/112981

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

131

Descargas

Los datos de descargas todavía no están disponibles.