Publicado

2021-08-24

Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática

Secondary metabolites of species of the Myristicaceae family that produce enzymatic inhibition

Metabólitos secundários isolados de espécies da família Myristicaceae que produzem inibição enzimática

DOI:

https://doi.org/10.15446/rcciquifa.v50n2.97916

Palabras clave:

Myristicaceae, actividad enzimática, compuestos fenólicos (es)
Myristicaceae, atividade enzimática, compostos fenólicos (pt)
Myristicaceae, enzymatic activity, phenolic compounds (en)

Descargas

Autores/as

  • Xiomara Alejandra Cabrera Martínez Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación Productos Naturales Vegetales, A.A. 14490, Carrera 30 N.° 45--03, Bogotá D. C.
  • Luis Enrique Cuca Suarez Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación Productos Naturales Vegetales, A.A. 14490, Carrera 30 N.° 45--03, Bogotá D. C.

Introducción: Diferentes especies de la familia Myristicaceae han sido utilizadas con fines medicinales, nutricionales e industriales, mostrando así la importancia y potencial de la familia en diversos campos. El uso medicinal ha sido primordial por diferentes comunidades indígenas y ha venido en aumento como alternativa al tratamiento de enfermedades, por lo cual la investigación se está concentrando en la medicina herbaria y plantas medicinales, siendo este el primer paso para el desarrollo e innovación de fármacos. Entre los tipos de fármacos se destacan los inhibidores enzimáticos, que actúan regulando procesos metabólicos o atacando patógenos. Objetivos: Recopilar información de la herboristería de la familia Myristicaceae que incluya aspectos de fitoquímica, etnobotánica, usos industriales, actividad biológica y determinar posibles metabolitos secundarios que producen inhibición enzimática y actividad biológica. Metodología: La búsqueda de información se realizó con artículos científicos, libros especializados y tesis de grado. Resultados y conclusiones: Se encontró que compuestos fenólicos de tipo: acilfenol, lignano, neolignano, flavonoide, alquenilfenol, tocotrienol y ácido fenólico producen inhibición enzimática. Los compuestos fenólicos identificados en especies de la familia Myristicaceae son una fuente promisoria de metabolitos que producen inhibición enzimática. Siendo los metabolitos de tipo lignanos los que presentaron mayor número de estudios de inhibición enzimática. La información analizada puede servir de base para el desarrollo de investigaciones de relación estructura actividad y/o acoplamiento molecular entre metabolitos secundarios y enzimas inhibidas, con especies de la familia Myristicaceae.

 

Introduction: Different species of the Myristicaceae family have been used for medicinal, nutritional and industrial purposes, showing the importance and potential of the family in various fields. Medicinal use has been primordial for different indigenous communities and has been increasing as an alternative for the treatment of diseases, for which research is concentrating on herbal medicine and medicinal plants, being this the first step for the development and innovation of pharmaceuticals. Among the types of drugs, enzymatic inhibitors, which act by regulating metabolic processes or attacking pathogens, stand out. Objectives: To gather information on the herbalism of the Myristicaceae family including aspects of phytochemistry, ethnobotany, industrial uses, biological activity and to determine possible secondary metabolites that produce enzymatic inhibition and biological activity. Methodology: The search for information was carried out using scientific articles, specialized books and degree theses. Results and conclusions: Phenolic compounds of type: acylphenol, lignan, neolignan, flavonoid, alkenylphenol, tocotrienol and phenolic acid were found to produce enzymatic inhibition. Phenolic compounds identified in species of the Myristicaceae family are a promising source of metabolites that produce enzymatic inhibition. Lignan-type metabolites were the ones that presented the greatest number of enzymatic inhibition studies. The information analyzed can serve as a basis for the development of research on the structure-activity relationship and/or molecular coupling between secondary metabolites and inhibited enzymes, with species of the Myristicaceae family.

Introdução: Diferentes espécies da família Myristicaceae têm sido utilizadas para fins medicinais, nutricionais e industriais, mostrando a importância e o potencial da família em vários campos. O uso medicinal tem sido de suma importância para diferentes comunidades indígenas e tem aumentado como alternativa para o tratamento de doenças, razão pela qual a pesquisa está se concentrando na medicina herbal e plantas medicinais, sendo este o primeiro passo para o desenvolvimento e inovação de produtos farmacêuticos. Entre os tipos de drogas estão os inibidores enzimáticos, que atuam regulando processos metabólicos ou atacando patógenos. Objetivos: Compilar informações sobre o herbalismo da família Myristicaceae, incluindo aspectos de fitoquímica, etnobotânica, usos industriais, atividade biológica e determinar possíveis metabolitos secundários que produzem inibição enzimática e atividade biológica. Metodologia: A busca de informações foi realizada utilizando artigos científicos, livros especializados e teses de graduação. Resultados e conclusões: Foram encontrados compostos fenólicos como: acylphenol, lignan, neolignan, flavonoid, alkenylphenol, tocotrienol e ácido fenólico para produzir inibição enzimática. Os compostos fenólicos identificados em espécies da família Myristicaceae são uma fonte promissora de metabólitos que produzem inibição enzimática. Os metabólitos do tipo lignano mostraram o maior número de estudos de inibição enzimática. As informações analisadas podem servir como base para o desenvolvimento de pesquisas sobre a relação estrutura-atividade e/ou acoplamento molecular entre metabolitos secundários e enzimas inibidas, com espécies da família Myristicaceae.

Referencias

Harvey, R. Edrada, R. Quinn, The re-emergence of natural products for drug discovery in the genomics era, Nat. Rev. Drug Discov., 14, 111-129 (2015).

R. Silverman. M. Holladay. The Organic Chemistry of Drug Design and Drug Action, 3rd ed., Academic Press, New York, 2014, pp. 208.

C. Ruge, L. Cuca, J. Martínez, Estudio químico y microbiológico del extracto etanólico de las hojas y corteza de Virola calophylla (Myristicaceae), Rev. Colomb. Cienc. Quím. Farm., 27, 33-37 (1998).

N. Peporine, D. Siqueira, M. Kato, M. Yoshida, Butanolides as a common feature of Iryanthera lancifolia and Virola surinamensis, Phytochemistry, 49(5), 1405-1410 (1998).

A. Chevallier, Enciclopedia de plantas medicinales, Acento, Madrid, 1997, p. 7.

The Plant List 2013. URL: http://www.theplantlist.org/

C. Taylor, W. Devia-Álvarez, La familia de árboles tropicales Myristicaceae en el departamento del Valle del Cauca, Colombia, Biota Colomb., 1, 106-108 (2000).

M. Ureta, Revisión taxonómica de la familia Myristicaceae de la selva central, Oxapampa - Perú, Rev. Intrópica, 5, 29-36 (2010).

C. Boluda, B. Duque, Z. Aragón, Lignanos (l) estructura y funciones en las plantas, Rev. Fitoter., 5(1), 55-68 (2005).

J. Martinez, M. Aldana, L. Cuca, Dibenzylbutane lignans from Virola sebifera leaves, Phytochemistry, 50, 883-886 (1999).

J. Martínez, L. Cuca, P. Martínez, Lignanos furofuránicos en corteza de Virola sebifera (Aublet), Rev. Colomb. Quím., 14(1-2), 117-125 (1985).

V. Rotz, L. Cuca, J. Martínez, Lignanos en hojas de Virola sebifera, Rev. Colomb. Quím., 16 (1-2), 51-55 (1987).

J. Martínez, L. Cuca, J. Rodríguez, Lignanos en Osteophloeum sulcatum, Rev. Colomb. Quím., 23(2), 9-16 (1994).

E. Álvarez, L. Cuca, J. Martínez, Neolignanos en hojas de Virola calophylla (Warb), Rev. Colomb. Quím., 14(1-2), 31-41 (1985).

F. Bernal, L. Cuca, Chemical constituents from Iryanthera ulei Warb, Biochem. Syst. Eco., 37, 772-775 (2009).

P. Ferri, L. Barata, Neolignans and a phenylpropanoid from Virola pavonis leaves, Phytochemistry, 31(4), 1375-1377 (1992).

J. Martínez, Distribution of flavonoids in the Myristicaceae, Phytochemistry, 55, 505-511 (2000).

E. Almeida, R. Braz, V. Bulow, J. Correa, O. Gottlieb, G. Maia, M. Da Silva, Diarilpropanoids from Iryanthera polyneura, Phytochemistry, 18, 1015-1016 (1979).

O. Gottlieb, Neolignans from Virola carinata, Phytochemistry, 15, 773-774 (1976).

M. Kato, M. Yoshida, O. Gottlieb, Flavones and lignans in flowers, fruits and seedlings of Virola venosa, Phytochemistry, 31, 283-287 (1992).

D. Silva, M. Yoshida, M. Kato, Flavonoids from Iryanthera sagotiana, Phytochemistry, 46(3), 579-562 (1997).

M. Gonzaléz, M. Pinto, A. Kijjoa, C. Anantachoke, W. Herz, Stilbenes and other constituents of Knema austrosiamensis, Phytochemistry, 32(2), 433-438 (1993).

J. Martínez, L. Cuca, Flavonoids from Virola calophylloidea, J. Nat. Prod., 50(6), 1045-1047 (1987).

N. Franca, P. Díaz, O. Gottlieb, Flavans from Iryanthera species, Phytochemistry, 13, 1631-1632 (1974).

P. Diaz, A. De Diaz, Diarylpropanes from the wood of Iryanthera grandis, Phytochemistry, 25(10) 2395-2397 (1986).

R. Braz, M. Da Silva, O. Gottlieb, Flavonoids from Iryanthera laevis, Phytochemistry, 19, 1195-1197 (1980).

A. Kijjoa, A. Giesbrecht, O. Gottlieb, H. Gottlieb, 1,3-diarilpropanes and propan-2-ols from Virola species, Phytochemistry, 20, (6), 1385-1388 (1981).

M. Gopalarkishnan, A. Mathews, Proanthocyanidins of nutmeg, Indian Cocoa Arecanut Species Journal, 64, 105, 1983.

R. Braz, M. Leite, O. Gottlieb, Constitutions of Diarylpropanoids from Virola multinervia, Phytochemistry, 12, 417-419 (1973).

J. Martínez, L. Cuca, Dihidrochalconas en corteza de Iryanthera laevis, Rev. Colomb. Quím., 18 (1-2), 37-46 (1989).

N. Lopes, M. Kato, M. Yoshida, Antifungal constituents from roots of Virola surinamensis, Phytochemistry, 51, 29-33 (1999).

L. Garzon, C. Guarin, J. Martinez, L. Cuca, Estudio químico de la familia Myristicaceae, Noticias Quim., 11(45), 21-25 (1987).

L. Conserva, M. Yoshida, O. Gottlieb, J. Martínez, H. Gottlieb, Iryantherins, Lignoflavonoids of novel structural types from the Myristicaceae, Phytochemistry, 29(12), 3911-3918 (1990).

D. Silva, A. Cavalheiro, M. Yoshida, O. Gottlieb, Flavonolignoids from fruits of Iryanthera grandis, Phytochemistry, 38(4), 1013-1016 (1995).

R. Braz, G. Pedreira, O. Gottlieb, J. Maia, Isoflavones from Virola caducifólia, Phytochemistry, 15, 1029-1030 (1976).

E. Benavides, Contribución al Estudio Químico de los Extractos Etanólicos de las Hojas y Corteza de la Especie Virola sp., Trabajo de Grado, Universidad Nacional de Colombia, Bogotá, Colombia, 1999.

E. Blumenthal, M. Da Silva, M. Yoshida, Lignoids, Flavonoids and polyketides of Virola surinamensis, Phytochemistry, 46(4), 745-749 (1997).

L. Zeng, M. Gu Z, X. Fang, J. McLaughlin, Kneglomeratanol, kneglomeratanones A and B, and related bioactive compounds from Knema glomerata, J. Nat. Prod., 57(3), 376-381 (1994).

R. Braz, O. Gottieb, D. Moraes, G. Pedreira, S. Pinto, Isoflavonoids from Amazonian species, Lloydia, 40(3), 236-238 (1977).

L. Cuca, F. Bernal, C. Coy, E. Coy, Essential oil composition and antimicrobial activity of fruits of Iryanthera ulei W. from Colombia, J. Chil. Chem Soc., 54, 363-365 (2009).

I. Suffredini, S. De Sousa, S. Frana, H. Suffredini, I. Díaz, M. Paciencia, Multivariate analysis of the terpene composition of Osteophloeum platyspermum Warb. (Myristicaceae) and its relationship to seasonal variation over a two-year period, J. Essent. Oil Bear, Pl., 19 (6), 1380-1393 (2016).

S. Agurell, B. Holmstedt, J. Lindgren, Alkaloids in certain species of Virola and other South American plants of ethnopharmacologic interest, Acta Chem. Scand., 23, 903-916 (1969).

M. Gonzalez, M. Pinto, A. Kijjoa, S. Kengthong, I. Mondanondra, A. Silva, G. Eaton, W. Herz, 5,7-Dihydroxychromones and 8-hydroxytetrahydrochromones from Horsfieldia irya, Phytochemistry, 61, 995-998 (2002).

J. Carvalho, L. Ferreira, L. Da Silva Santos, M. Correa, L. Oliveira, J. Bastos, S. Sarti, Anti-inflammatory activity of flavone and some of its derivates from Virola michelli Heckel, J. Ethnopharmacol., 64, 173-177 (1999).

N. Azevedo, S. Santos, E. De Miranda, P. Feri, A 2-acylclohexane-1,3-dione from Virola oleífera, Phytochemistry, 46(8), 1375-1377 (1997).

C. Hiruma-Lima, L. Batista, A. Albino, L. De Pietro, L. Campaner, W. Vilegas, A. Monteiro, Antiulcerogenic action of ethanolic extract of the resin from Virola surinamensis Warb. (Myristicaceae), J. Ethnopharmacol., 122, 406-409 (2009).

T. Elufioye, E. Obuotor, J. Agbedahunsi, S. Adesanya, Cholinesterase inhibitory activity and structure elucidation of a new phytol derivative and a new cinnamic acid ester from Pycnanthus angolensis, Rev. Bras. Farmacogn., 26, 433-437 (2016).

M. Abrantes, T. Mil-Homens, N. Duarte, D. Lopes, P. Cravo, M. Madureira, M. Ferreira, Antiplasmodial activity of lignans and extracts from Pycnanthus angolensis, Planta Med., 74, 1408-1412 (2008).

M. Oluwatoyin, A. Olubukola, Antinociceptive and antiulcer activities of Pycnantus angolensis, Rev. Bras. Farmacogn., 25, 252-257 (2015).

H. Bandera, A. Anoma, Lignans from Myristica dactyloides, Phytochemistry, 44(4), 699-703 (1997).

J. Longefosse, E. Nossin, Medical ethnobotany survey in Martinique, J. Ethnopharmacol., 53, 117-142 (1996).

P. Sartorelli, M. Marx Young, M. Kato, Antifungal lignans from the arils of Virola oleífera, Phytochemistry, 47, 1003-1006 (1998).

B. Patro, A. Bauri, S. Mishra, S. Chattopadhyay, Antioxidant activity of Myristica malabarica extracts and their constituents, J. Agric. Food Chem., 53, 6912-6918 (2005).

M. Aqmal, Y. Sivasothy, C. Yeng, A. Ablat, J. Mohamad, M. Litaudon, K. Awang, Acylphenols and dimeric acylphenols from Myristica máxima, Fitoterapia, 111, 12-17 (2016).

L. Barata, L. Santos, P. Ferri, D. Philipson, A. Paine, S. Croft, Anti-leishmanial activity of neolignans from Virola species and synthetic analogues, Phytochemistry, 55, 589-595 (2000).

I. Roth, H. Lindorf, Desarrollo y anatomía del fruto y de la semilla de Myristica fragrans Van Houtt, Acta Bot. Venez., 9(1-4), 149-176 (1974).

R. Ramadhan, P. Phuwapraisirisan, New arylkanones from Horsfieldia macrobotrys, effective antidiabetic agents concomitantly α-glucosidase and free radicals, Bioorganic Med. Chem Lett., 25(20), 4529-4533 (2015).

N. Al-Mekhlafi, K. Shaari, F. Abas, E. Jeyaraj, J. Stanslas, S. Khalivulla, N. Lajis, New flavan and alkyl α, β-lactones from the stem bark of Horsfieldia superba, Nat. Prod. Commun., 8(4), 447-451 (2013).

D. Silva, Y. Zhang, L. Santos, V. Bolzani, M. Nair, Lipoperoxidation and Cyclooxygenases 1 and 2 Inhibitory Compounds from Iryanthera juruensis, J. Agric. Food Chem., 55, 2569-2574 (2007).

D. Sheng, A. López, B. Hillhouse, C. French, J. Hudson, N. Towers, Bioactive constituents from Iryanthera megistophylla, J. Nat. Prod., 65, 1412-1416 (2002).

J. Deng, S. Starck, S. Li, S. Hecht, (+)-Myristinins A and D from Knema elegans, which inhibit DNA polymerase β and cleave DNA, J. Nat. Prod., 68, 1625-1628 (2005).

M. Nadeem, K. Wai, F. Abas, S. Maulidiani Ahmad, S. Ali Shad, A. Rahman, M. Choudhary, N. Lajis, New class of acetylcholinesterase inhibitors from the stem bark of Knema laurina and their structural insights, Bioorganic Med. Chem. Lett., 21, 4097-4103 (2011).

F. Fillerur, J. Le Bail, L. Duroux, A. Simon, J. Chulia, Antiproliferative, anti-aromatase, anti-17β-HSD and antioxidant activities of lignans isolated from Myristica argéntea, Planta Med., 67, 700-704 (2001).

S. Abdul, Y. Sivasothy, S. Yee, M. Litaudon, J. Mohamad, K. Awang, Natural cholinestarase inhibitors from Myristica cinnamomea King, Bioorganic Med. Chem. Lett., 26, 3785-3792.

S. Sawadjoon, P. Kittakoop, K. Kirtikara, V. Vichai, M. Tanticharoen, Y. Thebtaranonth. Atropisomeric Myristinins: Selective COX-2 inhibitors and antifungal agents from Myristica cinnamomea, J. Org. Chem., 67, 5470-5475 (2002).

Y. Sivasothy, L. Kong, L. Kok, M. Litaudon, K. Awang. A potent alpha-glucosidase inhibitor from Myristica cinnamomea King, Phytochemistry, 122, 265-269 (2015).

A. Maia-Grondard, I. Schmitz-Alfonso, M.-T. Martin, K. Awang. O. Laprevote, F. Gueritte, M. Litaudon, Acylphenols from Myristica crassa as new acetylcholinesterase inhibitors, Planta Med., 74, 1457-1462 (2008).

D. Megawati, S. Fajriah, G. Primahana, R. Triana, M. Minarti, Antioxidant and α-glucosidase activities of benzoic acid derivate from the bark of Myristica fatua Houtt, AIP Conference Proceedings, 020027(1-5), 2017.

G. Cao, X. Yang, W. Xu, F. Li, New inhibitors of nitric oxide production from the seeds of Myristica fragrans, Food Chem. Toxicol., 62, 167-171 (2013).

A. El-Alfy, S. Joseph, A. Brahmbhatt, S. Akati, E. Abourashed, Indirect modulation of the endocannabinoid system by specific fractions of nutmeg total extract, Pharm. Biol., 54, 2933-2938 (2016).

K. Hyun Shin, O. Nam Kim, W. Sick Woo, Isolation of hepatic drug metabolism inhibitors from the seeds of Myristica fragrans, Arch. Pharmacal Res., 11(3), Article 240 (1988).

P. Jaiswal, P. Kumar, V. Singh, D. Singh, Enzyme Inhibition by Molluscicidal Components of Myristica fragrans Houtt, in the Nervous Tissue of Snail Lymnaea acuminata, Enzyme Res., 47874, 1-6 (2010).

B. Jiang, Y. Liang, X. Sun, X. Liu, W. Tian, X. Ma, Potent inhibitory effect of Chinese dietary spices on fatty acid synthase, Plant Foods Hum. Nutr., 70, 257-262 (2015).

J. Kang, N. Tae, B. Sun, J. Choe, J. Hyung, Malabaricone C supresses lipopolysaccharide - induced inflammatory responses via inhibiting ROS-mediated/AKT/IKK/NF-κB signaling in murine macrophages, Int. Immunopharmacol., 14, 302-310 (2012).

K. Lee, J. Kim, J. Cho, J. Choi, Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects, Int. J. Cosmetic Sci., 21, 71-82 (1999).

E. Martati, R. Boonpawa, J. Berg, A. Paini, A. Spenkelink, A. Punt, I. Rietjens, Malabaricone C-containing mace extract inhibits safrole bioactivation and DNA adduct formation both in vitro and in vivo, Food Chem. Toxicol., 66, 373-384 (2014).

U. Muñoz, P. Blanco, S. Matthew, E. Carcache, New acyclic bis phenylpropanoid and neolignans, from Myristica fragrans Houtt., exhibiting PARP-1 and NF-KB inhibitory effects, Food Chem., 202, 269-275 (2016).

T. Thi, W. Keun, P. Hung, S. Jeong, M. Yeol, K. Wook, Nectandrin B activates endothelial nitric-oxide synthase phosphorylation in endothelial cells: Role of the AMP-activated protein kinase/estrogen receptor α/phosphatidylinositol 3-kinase/Akt Pathway, Mol. Pharmacol., 80, 1166-1178 (2011).

M. Sharma, M. Kumar, Radioprotection of Swiss albino mice by Myristica fragrans houtt, J. Radiat. Res., 48, 135-141 (2007).

S. Yang, M. Na, J. Jang, K. Ah Kim, B. Yeon, N. Sung, W. Keun, J. Seog, Inhibition of protein tyrosine phosphatase 1B by lignans from Myristica fragrans, Phytother. Res., 20(8), 680-682 (2006).

Yanti, Inhibition of urokinase-type plasminogen activator expression by macelignan in Porphyromonas gingivales supernatant-induced human oral epithelial cells, HAYATI J. Biosci., 17(1), 31-37 (2010).

D. Banerjee, A. Bauri, R. Guha, S. Bandyopadhyay, S. Chattopadhyay, Healing properties of malabaricone B and malabaricone C, against indomethacin-induced gastric ulceration and mechanism of action, Eur. J. Pharmacol., 578 300-312 (2008).

F. Khanom, H. Kayahara, K. Tadasa, Superoxide-scavenging and prolyl endopeptidase inhibitory activities of Bangladeshi indigenous medicinal plants, Biosci. Biotechnol. Biochem., 64(4), 837-840 (2000).

V. Kuete, E. Nono, P. Mkounga, K. Marat, P. Hultin, A. Nkengfack, Antimicrobial activities of the CH2Cl2-CH3OH (1:1) extracts and compounds from the roots and fruits of Pycnantus angolensis (Myristicaceae), Nat. Prod. Res., 25(4), 432-443 (2011).

T. Mansoor, R. Ramalho, C. Rodriguez, M. Ferreira, Dibenzylbutane and butyrolactone-type lignans as apoptosis inducers in human hepatoma HuH-7 cells, Phytother. Res., 26, 692-696 (2012).

A. Tchinda, M. Tchuendem, S. Khan, I. Omar, F. Ngandeu, P. Nkeng, I. Choudhary, Antioxidant activity of the crude extract of the fruits of Pycnantus angolensis and α-glucosidase inhibitory activity of its constituents, Pharmacol. Online, 1, 422-431 (2008).

D. McKenna, G. Towers, F. Abbott, Monoamine oxidase inhibitors in South American hallucinogenic plants. Part 2: Constituents of orally active Myristicaceous hallucinogens, J. Ethnopharmacol., 12, 179-211 (1984).

S. Zacchino, G. Rodriguez, C. Santecchia, G. Pezzenati, F. Gianninni, R. Enriz, In vitro studies on mode of action of antifungal 8.O.4'-neolignans ocurring in certain species of Virola and related genera of Myristicaceae, J. Ethnopharmacol., 62, 35-41 (1998).

Q. Jia, J. Zhao, Diarylalkanes as potent inhibitors of binuclear enzymes, Estados Unidos, US 2014/0371491 A1 (2014).

E. Kunitomo, Inhibidor de colagenasa y uso del mismo, Japón, JP 2004002268 A 20040108, (2004).

Cómo citar

APA

Cabrera Martínez, X. A. y Cuca Suarez, L. E. . (2021). Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática. Revista Colombiana de Ciencias Químico-Farmacéuticas, 50(2). https://doi.org/10.15446/rcciquifa.v50n2.97916

ACM

[1]
Cabrera Martínez, X.A. y Cuca Suarez, L.E. 2021. Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática. Revista Colombiana de Ciencias Químico-Farmacéuticas. 50, 2 (ago. 2021). DOI:https://doi.org/10.15446/rcciquifa.v50n2.97916.

ACS

(1)
Cabrera Martínez, X. A.; Cuca Suarez, L. E. . Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática. Rev. Colomb. Cienc. Quím. Farm. 2021, 50.

ABNT

CABRERA MARTÍNEZ, X. A.; CUCA SUAREZ, L. E. . Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 50, n. 2, 2021. DOI: 10.15446/rcciquifa.v50n2.97916. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/97916. Acesso em: 15 jul. 2024.

Chicago

Cabrera Martínez, Xiomara Alejandra, y Luis Enrique Cuca Suarez. 2021. «Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática». Revista Colombiana De Ciencias Químico-Farmacéuticas 50 (2). https://doi.org/10.15446/rcciquifa.v50n2.97916.

Harvard

Cabrera Martínez, X. A. y Cuca Suarez, L. E. . (2021) «Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática», Revista Colombiana de Ciencias Químico-Farmacéuticas, 50(2). doi: 10.15446/rcciquifa.v50n2.97916.

IEEE

[1]
X. A. Cabrera Martínez y L. E. . Cuca Suarez, «Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática», Rev. Colomb. Cienc. Quím. Farm., vol. 50, n.º 2, ago. 2021.

MLA

Cabrera Martínez, X. A., y L. E. . Cuca Suarez. «Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática». Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 50, n.º 2, agosto de 2021, doi:10.15446/rcciquifa.v50n2.97916.

Turabian

Cabrera Martínez, Xiomara Alejandra, y Luis Enrique Cuca Suarez. «Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática». Revista Colombiana de Ciencias Químico-Farmacéuticas 50, no. 2 (agosto 24, 2021). Accedido julio 15, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/97916.

Vancouver

1.
Cabrera Martínez XA, Cuca Suarez LE. Metabolitos secundarios aislados de especies de la familia Myristicaceae que producen inhibición enzimática. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 24 de agosto de 2021 [citado 15 de julio de 2024];50(2). Disponible en: https://revistas.unal.edu.co/index.php/rccquifa/article/view/97916

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

345

Descargas

Los datos de descargas todavía no están disponibles.