Publicado

2024-06-06

Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease

Administración de fármacos mediante dopaje de nanosensor de nitruro de boro para liberar el fármaco cloroquina en las células: un método prometedor para superar la enfermedad viral

Entrega de medicamentos usando dopagem de nanosensor de nitruro de boro para liberação de cloroquina nas células: um método promissor para superar doenças virais

DOI:

https://doi.org/10.15446/rcciquifa.v53n2.114450

Palavras-chave:

Chloroquine, Drug delivery, COVID–19, X–B4N10 (X=Al/C/Si) (en)
cloroquina, administración de fármacos, COVID–19, X–B4N10 (X=Al/C/Si) (es)
cloroquina, Drug delivery, COVID–19, X–B4N10 (X=Al/C/Si) (pt)

Autores

  • Fatemeh Mollaamin Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
  • Majid Monajjemi Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Introduction: Chloroquine drug as the SARS-CoV-2’s primary protease which can prevent in vitro viral duplication of all diverse experiments to now. Chloroquine drug is an anti-viral drug enlarged by Pfizer which can operate as an orally effective 3C-like protease inhibitor. Materials and Methods: In this work, chloroquine drug has been evaluated in forbiddance of coronavirus across trapping on the boron nitride nanocage (B4N10_NC) functionalized with some atoms as the drug delivery procedure owing to the direct electron transfer principle which can be illustrated by quantum mechanics method of density functional theory (DFT). Results and Discussion: As a matter of fact, it was performed the theoretical method of the B3LYP/6-311+G (d,p) to account the aptitude of B4N10_NC for grabbing Chloroquine drug via density of electronic states, nuclear quadrupole resonance, nuclear magnetic resonance, and thermodynamic specifications. Finally, the resulted amounts illustrated that using B4N10_NC functionalized with aluminum (Al), carbon (C), silicon (Si) for adsorbing Chloroquine drug towards formation of Chloroquine @Al–B4N10_NC, Chloroquine @C–B4N10_NC, Chloroquine @Si– B4N10_NC might provide the reasonable formula in drug delivery technique which is able to be fulfilled by quantum mechanics computations due to physicochemical properties of PDOS, NMR, NQR, and IR spectrum. Conclusions: Here, we used network pharmacology, metabolite analysis, and molecular simulation to figure out the biochemical basis of the health-raising influence of Chloroquine drug through drug delivery with B4N10_NC. This research article peruses the drug ability, metabolites, and potential interaction of Chloroquine drug with Coronavirus-induced pathogenesis.

Introducción: El fármaco cloroquina es la proteasa primaria del SARS-CoV-2 que puede prevenir la duplicación viral in vitro de todos los experimentos diversos hasta ahora. El fármaco cloroquina es un fármaco antiviral ampliado por Pfizer que puede funcionar como un inhibidor de la proteasa similar al 3C eficaz por vía oral. Materiales y métodos: en este trabajo, el fármaco cloroquina se ha evaluado para prevenir el coronavirus mediante la captura en la nanojaula de nitruro de boro (B4N10_NC) funcionalizada con algunos átomos como procedimiento de administración del fármaco debido al principio de transferencia directa de electrones que puede ilustrarse mediante la mecánica cuántica. Método de teoría funcional de la densidad (DFT). Resultados y Discusión: De hecho, se realizó el método teórico del B3LYP/6-311+G (d,p) para dar cuenta de la aptitud de B4N10_NC para capturar la droga cloroquina a través de la densidad de estados electrónicos, resonancia cuadrupolo nuclear, resonancia magnética nuclear y especificaciones termodinámicas. Finalmente, las cantidades resultantes ilustraron que el uso de B4N10_NC funcionalizado con aluminio (Al), carbono (C), silicio (Si) para adsorber el fármaco cloroquina hacia la formación de cloroquina @Al–B4N10_NC, cloroquina @C–B4N10_NC, cloroquina @Si–B4N10_NC podría proporcionar la fórmula razonable en la técnica de administración de fármacos que puede cumplirse mediante cálculos de mecánica cuántica debido a las propiedades fisicoquímicas de PDOS, NMR, NQR y espectro IR. Conclusiones: Aquí utilizamos farmacología de red, análisis de metabolitos y simulación molecular para descubrir la base bioquímica del efecto saludable del medicamento cloroquina a través de la administración de fármacos con B4N10_NC. Este artículo de investigación examina detenidamente la capacidad del fármaco, los metabolitos y la posible interacción del fármaco cloroquina con la patogénesis inducida por el coronavirus.

Introdução: A droga cloroquina como a protease primária do SARS-CoV-2 que pode prevenir a duplicação viral in vitro de todos os diversos experimentos até agora. O medicamento cloroquina é um medicamento antiviral ampliado pela Pfizer que pode operar como um inibidor de protease semelhante ao 3C por via oral. Materiais e Métodos: Neste trabalho, a droga cloroquina foi avaliada na proibição do coronavírus através do aprisionamento na nanogaiola de nitruro de boro (B4N10_ NC) funcionalizada com alguns átomos como procedimento de entrega da droga devido ao princípio de transferência direta de elétrons que pode ser ilustrado pela mecânica quântica, método da teoria do funcional da densidade (DFT). Resultados e Discussão: Na verdade, foi realizado o método teórico do B3LYP/6-311+G (d,p) para contabilizar a aptidão do B4N10_NC para capturar a droga Cloroquina via densidade de estados eletrônicos, ressonância quadrupolo nuclear, ressonância magnética nuclear e especificações termodinâmicas. Finalmente, os valores resultantes ilustraram que o uso de B4N10_NC funcionalizado com alumínio (Al), carbono (C), silício (Si) para adsorver o medicamento Cloroquina para a formação de Cloroquina @Al – B4N10_NC, Cloroquina @ C – B4N10_NC, Cloroquina @ Si – B4N10_NC pode fornecer a fórmula razoável na técnica de entrega de medicamentos que pode ser realizada por cálculos de mecânica quântica devido às propriedades físico-químicas do espectro PDOS, RMN, NQR e IR. Conclusões: Aqui, usamos farmacologia de rede, análise de metabólitos e simulação molecular para descobrir a base bioquímica da influência do medicamento Cloroquina na melhoria da saúde por meio da entrega de medicamentos com B4N10_NC. Este artigo de pesquisa examina a capacidade do medicamento, os metabólitos e a interação potencial do medicamento Cloroquina com a patogênese induzida pelo Coronavírus.

Referências

A. Sharma, S. Tiwari, M.K. Deb, J.L. Marty, Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies, International Journal of Antimicrobial Agents, 56(2), 106054 (2020). Doi: https://doi.org/10.1016/j.ijantimicag.2020.106054

F. Mollaamin, M. Monajjemi, Thermodynamic research on the inhibitors of coronavirus through drug delivery method, Journal of the Chilean Chemical Society, 66(2), 5195-5205 (2021). Doi: https://doi.org/10.4067/S0717-97072021000205195

B. Hu, H. Guo, P. Zhou, Z.-L. Shi, Characteristics of SARS-CoV-2 and COVID-19, Nature Reviews Microbiology, 19(3), 141-154 (2021). Doi: https://doi.org/10.1038/s41579-020-00459-7

S. Shahriari, M. Monajjemi, F. Mollaamin, Determination of proteins specification with SARS- COVID-19 based ligand designing, Journal of the Chilean Chemical Society, 67(2), 5468-5476 (2022). Doi: https://doi.org/10.4067/S0717-97072022000205468

F. Mollaamin, Physicochemical investigation of anti-COVID19 drugs using several medicinal plants, Journal of the Chilean Chemical Society, 67(2), 5537-5546 (2022). Doi: https://doi.org/10.4067/S0717-97072022000205537

F. Mollaamin, S. Shahriari, M. Monajjemi, Treating omicron BA.4 & BA.5 via herbal antioxidant asafoetida: A DFT study of carbon nanocarrier in drug delivery, Journal of the Chilean Chemical Society, 68(1), 5781-5786 (2023). Doi: https://doi.org/10.4067/S0717-97072023000105781

F. Mollaamin, S. Shahriari, M. Monajjemi, Monkeypox disease treatment by tecovirimat adsorbed onto single-walled carbon nanotube through drug delivery method, Journal of the Chilean Chemical Society, 68(1), 5796-5801 (2023). Doi: https://doi.org/10.4067/S0717-97072023000105796

M. Monajjemi, F. Mollaamin, S. Shojaei, An overview on coronaviruses family from past to COVID-19: Introduce some inhibitors as antiviruses from Gillan’s plants, Biointerface Research in Applied Chemistry, 10(3), 5575-5585 (2020). Doi: https://doi.org/10.33263/BRIAC103.575585

F. Mollaamin, M. Monajjemi, Molecular drug discovery of potential inhibitor of Covid–19 using several medicinal plant ingredients: A promising therapy for viral disease, Revista de la Facultad de Ciencias, 13(1), 141-158 (2024). Doi: https://doi.org/10.15446/rev.fac.cienc.v13n1.111288

U. Anand, C. Cabreros, J. Mal, F. Ballesteros, Jr., M. Sillanpää, V. Tripathi, E. Bontempi, Novel coronavirus disease 2019 (COVID-19) pandemic: From transmission to control with an interdisciplinary vision, Environmental Research, 197, 111126 (2021). Doi: https://doi.org/10.1016/j.envres.2021.111126

R. Rana, R. Kant, R.S. Huirem, D. Bohra, N.K. Ganguly, Omicron variant: Current insights and future directions, Microbiological Research, 265, 127204 (2022). Doi: https://doi.org/10.1016/j.micres.2022.127204

P.C. Taylor, A.C. Adams, M.M. Hufford, I. de la Torre, K. Winthrop, R.L. Gottlieb, Neutralizing monoclonal antibodies for treatment of COVID-19, Nature Reviews Immunology, 21(6), 382-393 (2021). Doi: https://doi.org/10.1038/s41577-021-00542-x

R.L. Gottlieb, C.E. Vaca, R. Paredes, J. Mera, B.J. Webb, G. Perez, G. Oguchi, P. Ryan, B.U. Nielsen, M. Brown, A. Hidalgo, Y. Sachdeva, et al., Early remdesivir to prevent progression to severe Covid-19 in outpatients, The New England Journal of Medicine, 386(4), 305-315 (2022). Doi: https://doi.org/10.1056/NEJMoa2116846

P.S. Kim, S.W. Read, A.S. Fauci, Therapy for early COVID-19: A critical need, JAMA, 324(21), 2149-2150 (2020). Doi: https://doi.org/10.1001/jama.2020.22813

Z. Plavec, A. Domanska, X. Liu, P. Laine, L. Paulin, M. Varjosalo, P. Auvinen, S.G. Wolf, M. Anastasina, S.J. Butcher, SARS-CoV-2 Production, purification methods and UV inactivation for proteomics and structural studies, Viruses, 14(9), 1989 (2022). Doi: https://doi.org/10.3390/v14091989

N.Z. Zabidi, H.L. Liew, I.A. Farouk, A. Puniyamurti, A.J.W. Yip, V.N. Wijesinghe, Z.Y. Low, J.W. Tang, V.T.K. Chow, S.K. Lal, Evolution of SARS- CoV-2 variants: Implications on immune escape, vaccination, therapeutic and diagnostic strategies, Viruses, 15(4), 944 (2023). Doi: https://doi.org/10.3390/v15040944

O.I. Yarovaya, D.N. Shcherbakov, S.S. Borisevich, A.S. Sokolova, M.A. Gureev, E.M. Khamitov, N.B. Rudometova, A.V. Zybkina, E.D. Mordvinova, A.V. Zaykovskaya, A.D. Rogachev, O.V. Pyankov, R.A. Maksyutov, N.F. Salakhutdinov, Borneol ester derivatives as entry inhibitors of a wide spectrum of SARS-CoV-2 viruses, Viruses, 14(6), 1295 (2022). Doi: https://doi.org/10.3390/v14061295

A. Majeed, X. Zhang, On the adoption of modern technologies to fight the COVID-19 pandemic: A technical synthesis of latest developments, COVID, 3(1), 90-123 (2023). Doi: https://doi.org/10.3390/covid3010006

G. Bonaccorsi, F. Pierri, M. Cinelli, A. Flori, A. Galeazzi, F. Porcelli, A.L. Schmidt, C.M. Valensise, A. Scala, W. Quattrociocchi, F. Pammolli, Economic and social consequences of human mobility restrictions under COVID-19, Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15530- 15535 (2020). Doi: https://doi.org/10.1073/pnas.2007658117

A. Barakat, A. Mostafa, M. Ali, A.M. Al-Majid, L.R. Domingo, O. Kutkat, Y. Moatasim, K. Zia, Z. Ul-Haq, Y.A.M.M. Elshaier, Design, synthesis and in vitro evaluation of spirooxindole-based phenylsulfonyl moiety as a candidate anti-SAR-CoV-2 and MERS-CoV-2 with the implementation of combination studies, International Journal of Molecular Sciences, 23(19), 11861 (2022). Doi: https://doi.org/10.3390/ijms231911861

F. Zeng, Y. Huang, Y. Guo, M. Yin, X. Chen, L. Xiao, G. Deng, Association of inflammatory markers with the severity of COVID-19: a meta-analysis, International Journal of Infectious Diseases, 96, 467-474 (2020). Doi: https://doi.org/10.1016/j.ijid.2020.05.055

Q.M.S. Jamal, Antiviral potential of plants against COVID-19 during outbreaks—An update, International Journal of Molecular Sciences, 23(21), 13564 (2022). Doi: https://doi.org/10.3390/ijms232113564

S. Bibi, M.S. Khan, S.A. El-Kafrawy, T.A. Alandijany, M.M. El-Daly, Q. Yousafi, D. Fatima, A.A. Faizo, L.H. Bajrai, E.I. Azhar, Virtual screening and molecular dynamics simulation analysis of Forsythoside A as a plant-derived inhibitor of SARS-CoV-2 3CLpro, Saudi Pharmaceutical Journal, 30(7), 979-1002 (2022). Doi: https://doi.org/10.1016/j.jsps.2022.05.003

M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Research, 30(3), 269-271 (2020). Doi: https://doi.org/10.1038/s41422-020-0282-0

F. Touret, X. de Lamballerie, Of chloroquine and COVID-19, Antiviral Research, 177, 104762 (2020). Doi: https://doi.org/10.1016/j.antiviral.2020.104762

P. Colson, J.M. Rolain, J.C. Lagier, P. Brouqui, D. Raoult, Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, International Journal of Antimicrobial Agents, 55(4), 105932 (2020). Doi: https://doi.org/10.1016/j.ijantimicag.2020.105932

A. Cortegiani, G. Ingoglia, M. Ippolito, A. Giarratano, S. Einav, A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19, Journal of Critical Care, 57, 279-283 (2020). Doi: https://doi.org/10.1016/j.jcrc.2020.03.005

D. Tang, J. Li, R. Zhang, R. Kang, D.J. Klionsky, Chloroquine in fighting COVID-19: good, bad, or both? Autophagy, 16(12), 2273-2275 (2020). Doi: https://doi.org/10.1080/15548627.2020.1796014

J. Li, M. Zeng, H. Shan, C. Tong, Microneedle patches as drug and vaccine delivery platform, Current Medicinal Chemistry, 24(22), 2413-2422 (2017). Doi: https://doi.org/10.2174/0929867324666170526124053

A.P. Singh, A. Biswas, A. Shukla, P. Maiti, Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles, Signal Transduction and Targeted Therapy, 4, 33 (2019). Doi: https://doi.org/10.1038/s41392-019-0068-3

T.M. Allen, Drug delivery systems: Entering the mainstream, Science, 303(5665), 1818-1822 (2004). Doi: https://doi.org/10.1126/science.1095833

F. Mollaamin, M. Monajjemi, S. Mohammadi, Physicochemical characterization of antiviral phytochemicals of Artemisia annua plant as therapeutic potential against coronavirusdisease: In silico–drug delivery by density functional theory benchmark, Journal of Biological Regulators and Homeostatic Agents, 37(7), 3629-3639 (2023). Doi: https://doi.org/10.23812/j.biol.regul.homeost.agents.20233707.358

M. Monajjemi, M.T. Baie, F. Mollaamin, Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1-3) complexes: Density functional calculations, Russian Chemical Bulletin, 59, 886-889 (2010). Doi: https://doi.org/10.1007/s11172-010-0181-5

F. Mollaamin, M. Monajjemi, In situ drug delivery investigation through characterization and application of carbon-based nanomaterials: A promising approach for treating viral diseases, Journal of Biological Regulators and Homeostatic Agents, 38(3), 1961-1973 (2024). Doi: https://doi.org/10.23812/j.biol.regul.homeost.agents.20243803.153

B. Ghalandari, M. Monajjemi, F. Mollaamin, Theoretical investigation of carbon nanotube binding to DNA in view of drug delivery, Journal of Computational and Theoretical Nanoscience, 8(7), 1212-1219 (2011). Doi: https://doi.org/10.1166/jctn.2011.1801

F. Mollaamin, Computational methods in the drug delivery of carbon nanocarriers onto several compounds in Sarraceniaceae medicinal plant as monkeypox therapy, Computation, 11(4), 84 (2023). Doi: https://doi.org/10.3390/computation11040084

B. Khalili-Hadad, F. Mollaamin, M. Monajjemi, Biophysical chemistry of macrocycles for drug delivery: A theoretical study, Russian Chemical Bulletin, 60(2), 238-241 (2011). Doi: https://doi.org/10.1007/s11172-011-0039-5

F. Mollaamin, M. Monajjemi, Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: A molecular modeling framework by DFT perspective, Journal of Molecular Modeling, 29(4), 119 (2023). Doi: https://doi.org/10.1007/s00894-023-05526-3

D. Pan, F. Su, H. Liu, Y. Ma, R. Das, Q. Hu, C. Liu, Z. Guo, The properties and preparation methods of different boron nitride nanostructures and applications of related nanocomposites, The Chemical Record, 20(11), 1314-1337 (2020). Doi: https://doi.org/10.1002/tcr.202000079

S.M. Sharker, Hexagonal boron nitrides (white graphene): A promising method for cancer drug delivery, International Journal of Nanomedicine, 14, 9983-9993 (2019). Doi: https://doi.org/10.2147/IJN.S205095

M. Penz, E.I. Tellgren, M.A. Csirik, M. Ruggenthaler, A. Laestadius, The structure of density-potential mapping. Part I: Standard density-functional theory, ACS Physical Chemistry Au, 3(4), 334-347 (2023). Doi: https://doi.org/10.1021/acsphyschemau.2c00069

T. van Mourik, M. Bühl, M.-P. Gaigeot, Density functional theory across chemistry, physics and biology, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2011), 20120488 (2014). Doi: https://doi.org/10.1098/rsta.2012.0488

F. Mollaamin, M. Monajjemi, In silico-DFT investigation of nanocluster alloys of Al-(Mg, Ge, Sn) coated by nitrogen heterocyclic carbenes as corrosion inhibitors, Journal of Cluster Science, 34(6), 2901-2918 (2023). Doi: https://doi.org/10.1007/s10876-023-02436-5

K. Bakhshi, F. Mollaamin, M. Monajjemi, Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA), Journal of Computational and Theoretical Nanoscience, 8(4), 763-768 (2011). Doi: https://doi.org/10.1166/jctn.2011.1750

F. Mollaamin, M. Monajjemi, Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method, Sensor Review, 43(4), 266-279 (2023). Doi: https://doi.org/10.1108/SR-03-2023-0040

M. Monajjemi, J. Najafpour, F. Mollaamin, (3,3)4 Armchair carbon nanotube in connection with PNP and NPN junctions: Ab Initio and DFT-based studies, Fullerenes Nanotubes and Carbon Nanostructures, 21(3), 213-232 (2013). Doi: https://doi.org/10.1080/1536383X.2011.597010

F. Mollaamin, M. Monajjemi, Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ ONIOM approach, Molecular Simulation, 49(4), 365-376 (2023). Doi: https://doi.org/10.1080/08927022.2022.2159996

F. Mollaamin, M. Monajjemi, Adsorption ability of Ga5N10 nanomaterial for removing metal ions contamination from drinking water by DFT, International Journal of Quantum Chemistry, 124(2), e27348 (2024). Doi: https://doi.org/10.1002/qua.27348

A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, 38(6), 3098-3100 (1988). Doi: https://doi.org/10.1103/PhysRevA.38.3098

C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation- energy formula into a functional of the electron density, Physical Review B, 37(2), 785-789 (1988). Doi: https://doi.org/10.1103/PhysRevB.37.785

L.J. Onsager, Electric moments of molecules in liquids, Journal of the American Chemical Society, 58(8), 1486-1493 (1936). Doi: https://doi.org/10.1021/ja01299a050

C.J. Cramer, D.G. Truhlar, PM3-SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model, Journal of Computational Chemistry, 13(9), 1089-1097 (1992). Doi: https://doi.org/10.1002/jcc.540130907

M. Monajjemi, M. Khaleghian, N. Tadayonpour, F. Mollaamin, The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study, International Journal of Nanoscience, 9(5), 517- 529 (2010). Doi: https://doi.org/10.1142/S0219581X10007071

F. Mollaamin, A. Ilkhani, N. Sakhaei, B. Bonsakhteh, A. Faridchehr, S. Tohidi, M. Monajjemi, Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: Hydrogen bonding study, Journal of Computational and Theoretical Nanoscience, 12(10), 3148-3154 (2015). Doi: https://doi.org/10.1166/jctn.2015.4092

M. Khaleghian, M. Zahmatkesh, F. Mollaamin, M. Monajjemi, Investigation of solvent effects on armchair single-walled carbon nanotubes: A QM/MD study, Fullerenes, Nanotubes and Carbon Nanostructures, 19(4), 251-261 (2011). Doi: https://doi.org/10.1080/15363831003721757

F. Mollaamin, F. Najafi, M. Khaleghian, B. Khalili-Hadad, M. Monajjemi, Theoretical study of different solvents and temperatures effects on single-walled carbon nanotube and temozolomide drug: A QM/MM study, Fullerenes, Nanotubes and Carbon Nanostructures, 19(7), 653-667 (2011). Doi: https://doi.org/10.1080/1536383X.2010.504956

E.M. Sarasia, S. Afsharnezhad, B. Honarparvar, F. Mollaamin, M. Monajjemi, Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives, Physics and Chemistry of Liquids, 49(5), 561-571 (2011). Doi: https://doi.org/10.1080/00319101003698992

F. Mollaamin, M. Monajjemi, S. Salemi, M.T. Baei, A dielectric effect on normal mode analysis and symmetry of BNNT nanotube, Fullerenes, Nanotubes and Carbon Nanostructures, 19(3), 182-196 (2011). Doi: https://doi.org/10.1080/15363831003782932

M.A.A. Zadeh, H. Lari, L. Kharghanian, E. Balali, R. Khadivi, H. Yahyaei, F. Mollaamin, M. Monajjemi, Density functional theory study and anti-cancer properties of Shyshaq plant: In viewpoint of nano biotechnology, Journal of Computational and Theoretical Nanoscience, 12(11), 4358-4367 (2015). Doi: https://doi.org/10.1166/jctn.2015.4366

C.C. Chambers, G.D. Hawkins, C.J. Cramer, D.G. Truhlar, Model for aqueous solvation based on class IV atomic charges and first solvation shell effects, Journal of Physical Chemistry, 100(40), 16385-16398 (1996). Doi: https://doi.org/10.1021/jp9610776

M. Monajjemi, M. Noei, F. Mollaamin, Design of fMet-tRNA and calculation of its bonding properties by quantum mechanics, Nucleosides, Nucleotides & Nucleic Acids, 29(9), 676-683 (2010). Doi: https://doi.org/10.1080/15257771003781642

F. Mollaamin, Features of parametric point nuclear magnetic resonance of metals implantation on boron nitride nanotube by density functional theory/electron paramagnetic resonance, Journal of Computational and Theoretical Nanoscience, 11(11), 2393-2398 (2014). Doi: https://doi.org/10.1166/jctn.2014.3653

A. Tahan, F. Mollaamin, M. Monajjemi, Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy, Russian Journal of Physical Chemistry A, 83(4), 587-597 (2009). Doi: https://doi.org/10.1134/S003602440904013X

F. Mollaamin, M. Monajjemi, B5N10 nanocarrier functionalized with Al, C, Si atoms: A drug delivery method for infectious disease remedy, OBM Genetics, 8(1), 214 (2024). Doi: https://doi.org/10.21926/obm.genet.2401214

F. Mollaamin, M. Monajjemi, Bone therapy through drug delivery of chelated [bisphosphonate-metal ions] adsorbed on the surface of carbon nanotubes, Revista Colombiana de Ciencias Químico-Farmacéuticas, 52(2), 741-765 (2023). Doi: https://doi.org/10.15446/rcciquifa.v52n2.110734

F. Mollaamin, M. Monajjemi, Harmonic linear combination and normal mode analysis of semiconductor nanotubes vibrations, Journal of Computational and Theoretical Nanoscience, 12(6), 1030-1039 (2015). Doi: https://doi.org/10.1166/jctn.2015.3846

A.M.Vargason, A.C. Anselmo, S. Mitragotri, The evolution of commercial drug delivery technologies, Nature Biomedical Engineering, 5(9), 951-967 (2021). Doi: https://doi.org/10.1038/s41551-021-00698-w

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, et al., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

C. Ochsenfeld, J. Kussmann, F. Koziol, Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling methods. Angewante Chemie, International Edition, 43(34), 4485-4489 (2004). Doi: https://doi.org/10.1002/anie.200460336

J.A.S. Smith, Nuclear quadrupole resonance spectroscopy. General principles, Journal of Chemical Education, 48(1), 39-41 (1971). Doi: https://doi.org/10.1021/ed048p39

Como Citar

APA

Mollaamin, F. e Monajjemi, M. (2024). Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease. Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(2), 430–454. https://doi.org/10.15446/rcciquifa.v53n2.114450

ACM

[1]
Mollaamin, F. e Monajjemi, M. 2024. Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease. Revista Colombiana de Ciencias Químico-Farmacéuticas. 53, 2 (jun. 2024), 430–454. DOI:https://doi.org/10.15446/rcciquifa.v53n2.114450.

ACS

(1)
Mollaamin, F.; Monajjemi, M. Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease. Rev. Colomb. Cienc. Quím. Farm. 2024, 53, 430-454.

ABNT

MOLLAAMIN, F.; MONAJJEMI, M. Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease. Revista Colombiana de Ciencias Químico-Farmacéuticas, [S. l.], v. 53, n. 2, p. 430–454, 2024. DOI: 10.15446/rcciquifa.v53n2.114450. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/114450. Acesso em: 16 ago. 2024.

Chicago

Mollaamin, Fatemeh, e Majid Monajjemi. 2024. “Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease”. Revista Colombiana De Ciencias Químico-Farmacéuticas 53 (2):430-54. https://doi.org/10.15446/rcciquifa.v53n2.114450.

Harvard

Mollaamin, F. e Monajjemi, M. (2024) “Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease”, Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(2), p. 430–454. doi: 10.15446/rcciquifa.v53n2.114450.

IEEE

[1]
F. Mollaamin e M. Monajjemi, “Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease”, Rev. Colomb. Cienc. Quím. Farm., vol. 53, nº 2, p. 430–454, jun. 2024.

MLA

Mollaamin, F., e M. Monajjemi. “Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease”. Revista Colombiana de Ciencias Químico-Farmacéuticas, vol. 53, nº 2, junho de 2024, p. 430-54, doi:10.15446/rcciquifa.v53n2.114450.

Turabian

Mollaamin, Fatemeh, e Majid Monajjemi. “Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease”. Revista Colombiana de Ciencias Químico-Farmacéuticas 53, no. 2 (junho 6, 2024): 430–454. Acessado agosto 16, 2024. https://revistas.unal.edu.co/index.php/rccquifa/article/view/114450.

Vancouver

1.
Mollaamin F, Monajjemi M. Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease. Rev. Colomb. Cienc. Quím. Farm. [Internet]. 6º de junho de 2024 [citado 16º de agosto de 2024];53(2):430-54. Disponível em: https://revistas.unal.edu.co/index.php/rccquifa/article/view/114450

Baixar Citação

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Acessos à página de resumo

47

Downloads

Não há dados estatísticos.