Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev
Schlagworte:
Sobolev inner product, orthogonal polynomials, asymptotic behavior, distribution of zeros (es)Downloads
In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on [-1, 1]. It is proven that for the class of monic Jacobi-Sobolev orthogonal polynomials, the smallest closed interval that contains its real zeros is [-√(1+2C, √ 1+2C] with C a constant explicitly determined. The asymptotic distribution of those zeros is studied and also we analyze the asymptotic comparative behavior between the sequence of monic Jacobi-Sobolev orthogonal polynomials and the sequence of monic Jacobi ortogonal polynomials under certain restrictions.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2001 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.