Veröffentlicht

2001-07-01

Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev

Schlagworte:

Sobolev inner product, orthogonal polynomials, asymptotic behavior, distribution of zeros (es)

Autor/innen

  • Héctor Pijeira Universidad de Matanzas
  • Yamilet Quintana Universidad Central de Venezuela
  • Wilfredo Urbina Universidad Central de Venezuela

In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on [-1, 1]. It is proven that for the class of monic Jacobi-Sobolev orthogonal polynomials, the smallest closed interval that contains its real zeros is [-√(1+2C, √ 1+2C] with C a constant explicitly determined. The asymptotic distribution of those zeros is studied and also we analyze the asymptotic comparative behavior between the sequence of monic Jacobi-Sobolev orthogonal polynomials and the sequence of monic Jacobi ortogonal polynomials under certain restrictions.

Zitationsvorschlag

APA

Pijeira, H., Quintana, Y. und Urbina, W. (2001). Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas, 35(2), 77–97. https://revistas.unal.edu.co/index.php/recolma/article/view/33818

ACM

[1]
Pijeira, H., Quintana, Y. und Urbina, W. 2001. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas. 35, 2 (Juli 2001), 77–97.

ACS

(1)
Pijeira, H.; Quintana, Y.; Urbina, W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. rev.colomb.mat 2001, 35, 77-97.

ABNT

PIJEIRA, H.; QUINTANA, Y.; URBINA, W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas, [S. l.], v. 35, n. 2, p. 77–97, 2001. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33818. Acesso em: 22 jan. 2025.

Chicago

Pijeira, Héctor, Yamilet Quintana, und Wilfredo Urbina. 2001. „Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev“. Revista Colombiana De Matemáticas 35 (2):77-97. https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Harvard

Pijeira, H., Quintana, Y. und Urbina, W. (2001) „Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev“, Revista Colombiana de Matemáticas, 35(2), S. 77–97. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33818 (Zugegriffen: 22 Januar 2025).

IEEE

[1]
H. Pijeira, Y. Quintana, und W. Urbina, „Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev“, rev.colomb.mat, Bd. 35, Nr. 2, S. 77–97, Juli 2001.

MLA

Pijeira, H., Y. Quintana, und W. Urbina. „Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev“. Revista Colombiana de Matemáticas, Bd. 35, Nr. 2, Juli 2001, S. 77-97, https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Turabian

Pijeira, Héctor, Yamilet Quintana, und Wilfredo Urbina. „Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev“. Revista Colombiana de Matemáticas 35, no. 2 (Juli 1, 2001): 77–97. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Vancouver

1.
Pijeira H, Quintana Y, Urbina W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. rev.colomb.mat [Internet]. 1. Juli 2001 [zitiert 22. Januar 2025];35(2):77-9. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33818

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

198

Downloads

Keine Nutzungsdaten vorhanden.