Published

2001-07-01

Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev

Keywords:

Sobolev inner product, orthogonal polynomials, asymptotic behavior, distribution of zeros (es)

Authors

  • Héctor Pijeira Universidad de Matanzas
  • Yamilet Quintana Universidad Central de Venezuela
  • Wilfredo Urbina Universidad Central de Venezuela

In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on [-1, 1]. It is proven that for the class of monic Jacobi-Sobolev orthogonal polynomials, the smallest closed interval that contains its real zeros is [-√(1+2C, √ 1+2C] with C a constant explicitly determined. The asymptotic distribution of those zeros is studied and also we analyze the asymptotic comparative behavior between the sequence of monic Jacobi-Sobolev orthogonal polynomials and the sequence of monic Jacobi ortogonal polynomials under certain restrictions.

How to Cite

APA

Pijeira, H., Quintana, Y. and Urbina, W. (2001). Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas, 35(2), 77–97. https://revistas.unal.edu.co/index.php/recolma/article/view/33818

ACM

[1]
Pijeira, H., Quintana, Y. and Urbina, W. 2001. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas. 35, 2 (Jul. 2001), 77–97.

ACS

(1)
Pijeira, H.; Quintana, Y.; Urbina, W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. rev.colomb.mat 2001, 35, 77-97.

ABNT

PIJEIRA, H.; QUINTANA, Y.; URBINA, W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas, [S. l.], v. 35, n. 2, p. 77–97, 2001. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33818. Acesso em: 22 jan. 2025.

Chicago

Pijeira, Héctor, Yamilet Quintana, and Wilfredo Urbina. 2001. “Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev”. Revista Colombiana De Matemáticas 35 (2):77-97. https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Harvard

Pijeira, H., Quintana, Y. and Urbina, W. (2001) “Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev”, Revista Colombiana de Matemáticas, 35(2), pp. 77–97. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33818 (Accessed: 22 January 2025).

IEEE

[1]
H. Pijeira, Y. Quintana, and W. Urbina, “Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev”, rev.colomb.mat, vol. 35, no. 2, pp. 77–97, Jul. 2001.

MLA

Pijeira, H., Y. Quintana, and W. Urbina. “Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev”. Revista Colombiana de Matemáticas, vol. 35, no. 2, July 2001, pp. 77-97, https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Turabian

Pijeira, Héctor, Yamilet Quintana, and Wilfredo Urbina. “Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev”. Revista Colombiana de Matemáticas 35, no. 2 (July 1, 2001): 77–97. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Vancouver

1.
Pijeira H, Quintana Y, Urbina W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. rev.colomb.mat [Internet]. 2001 Jul. 1 [cited 2025 Jan. 22];35(2):77-9. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/33818

Download Citation

Article abstract page views

198

Downloads

Download data is not yet available.