Pubblicato

2001-07-01

Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev

Parole chiave:

Sobolev inner product, orthogonal polynomials, asymptotic behavior, distribution of zeros (es)

##submission.downloads##

Autori

  • Héctor Pijeira Universidad de Matanzas
  • Yamilet Quintana Universidad Central de Venezuela
  • Wilfredo Urbina Universidad Central de Venezuela

In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on [-1, 1]. It is proven that for the class of monic Jacobi-Sobolev orthogonal polynomials, the smallest closed interval that contains its real zeros is [-√(1+2C, √ 1+2C] with C a constant explicitly determined. The asymptotic distribution of those zeros is studied and also we analyze the asymptotic comparative behavior between the sequence of monic Jacobi-Sobolev orthogonal polynomials and the sequence of monic Jacobi ortogonal polynomials under certain restrictions.

Come citare

APA

Pijeira, H., Quintana, Y. e Urbina, W. (2001). Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas, 35(2), 77–97. https://revistas.unal.edu.co/index.php/recolma/article/view/33818

ACM

[1]
Pijeira, H., Quintana, Y. e Urbina, W. 2001. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas. 35, 2 (lug. 2001), 77–97.

ACS

(1)
Pijeira, H.; Quintana, Y.; Urbina, W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. rev.colomb.mat 2001, 35, 77-97.

ABNT

PIJEIRA, H.; QUINTANA, Y.; URBINA, W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas, [S. l.], v. 35, n. 2, p. 77–97, 2001. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33818. Acesso em: 22 gen. 2025.

Chicago

Pijeira, Héctor, Yamilet Quintana, e Wilfredo Urbina. 2001. «Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev». Revista Colombiana De Matemáticas 35 (2):77-97. https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Harvard

Pijeira, H., Quintana, Y. e Urbina, W. (2001) «Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev», Revista Colombiana de Matemáticas, 35(2), pagg. 77–97. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33818 (Consultato: 22 gennaio 2025).

IEEE

[1]
H. Pijeira, Y. Quintana, e W. Urbina, «Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev», rev.colomb.mat, vol. 35, n. 2, pagg. 77–97, lug. 2001.

MLA

Pijeira, H., Y. Quintana, e W. Urbina. «Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev». Revista Colombiana de Matemáticas, vol. 35, n. 2, luglio 2001, pagg. 77-97, https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Turabian

Pijeira, Héctor, Yamilet Quintana, e Wilfredo Urbina. «Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev». Revista Colombiana de Matemáticas 35, no. 2 (luglio 1, 2001): 77–97. Consultato gennaio 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Vancouver

1.
Pijeira H, Quintana Y, Urbina W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. rev.colomb.mat [Internet]. 1 luglio 2001 [citato 22 gennaio 2025];35(2):77-9. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33818

Scarica citazione

Viste delle pagine degli abstract

198

Downloads

I dati di download non sono ancora disponibili.