Publié-e

2001-07-01

Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev

Mots-clés :

Sobolev inner product, orthogonal polynomials, asymptotic behavior, distribution of zeros (es)

Téléchargements

Auteurs-es

  • Héctor Pijeira Universidad de Matanzas
  • Yamilet Quintana Universidad Central de Venezuela
  • Wilfredo Urbina Universidad Central de Venezuela

In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on [-1, 1]. It is proven that for the class of monic Jacobi-Sobolev orthogonal polynomials, the smallest closed interval that contains its real zeros is [-√(1+2C, √ 1+2C] with C a constant explicitly determined. The asymptotic distribution of those zeros is studied and also we analyze the asymptotic comparative behavior between the sequence of monic Jacobi-Sobolev orthogonal polynomials and the sequence of monic Jacobi ortogonal polynomials under certain restrictions.

Comment citer

APA

Pijeira, H., Quintana, Y. et Urbina, W. (2001). Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas, 35(2), 77–97. https://revistas.unal.edu.co/index.php/recolma/article/view/33818

ACM

[1]
Pijeira, H., Quintana, Y. et Urbina, W. 2001. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas. 35, 2 (juill. 2001), 77–97.

ACS

(1)
Pijeira, H.; Quintana, Y.; Urbina, W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. rev.colomb.mat 2001, 35, 77-97.

ABNT

PIJEIRA, H.; QUINTANA, Y.; URBINA, W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. Revista Colombiana de Matemáticas, [S. l.], v. 35, n. 2, p. 77–97, 2001. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33818. Acesso em: 22 janv. 2025.

Chicago

Pijeira, Héctor, Yamilet Quintana, et Wilfredo Urbina. 2001. « Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev ». Revista Colombiana De Matemáticas 35 (2):77-97. https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Harvard

Pijeira, H., Quintana, Y. et Urbina, W. (2001) « Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev », Revista Colombiana de Matemáticas, 35(2), p. 77–97. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/33818 (Consulté le: 22 janvier 2025).

IEEE

[1]
H. Pijeira, Y. Quintana, et W. Urbina, « Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev », rev.colomb.mat, vol. 35, nᵒ 2, p. 77–97, juill. 2001.

MLA

Pijeira, H., Y. Quintana, et W. Urbina. « Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev ». Revista Colombiana de Matemáticas, vol. 35, nᵒ 2, juillet 2001, p. 77-97, https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Turabian

Pijeira, Héctor, Yamilet Quintana, et Wilfredo Urbina. « Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev ». Revista Colombiana de Matemáticas 35, no. 2 (juillet 1, 2001): 77–97. Consulté le janvier 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33818.

Vancouver

1.
Pijeira H, Quintana Y, Urbina W. Zero localization and asymptotic behavior of orthogonal polynomials of Jacobi-Sobolev. rev.colomb.mat [Internet]. 1 juill. 2001 [cité 22 janv. 2025];35(2):77-9. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/33818

Télécharger la référence

Consultations de la page du résumé de l'article

198

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.