Veröffentlicht

2002-07-01

Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature

Schlagworte:

Clifford hypersurfaces, minimal hypersurfaces, shape operator (es)

Autor/innen

  • Oscar Perdomo Universidad del Valle

In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n  - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone.

By Gauss' formula, the condition on the scalar curvature is equivalent to the condition that the function K1(m)2 + ... + Kn-1 (m)2 varies radially. Here the Ki are the principal curvatures at m ∈ M. Under the same hypothesis, for M ⊏ ℝ10  we prove that if not only K1(m)2 + ... + Kn-1 (m) varies radially but either K1(m)3 + ... + Kn-1 (m)3 varies radially or K1(m)4 + ... + Kn-1 (m)4 varies radially, then M must be either a hyperplane or a Clifford minimal cone.

Zitationsvorschlag

APA

Perdomo, O. (2002). Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas, 36(2), 97–106. https://revistas.unal.edu.co/index.php/recolma/article/view/33867

ACM

[1]
Perdomo, O. 2002. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas. 36, 2 (Juli 2002), 97–106.

ACS

(1)
Perdomo, O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. rev.colomb.mat 2002, 36, 97-106.

ABNT

PERDOMO, O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas, [S. l.], v. 36, n. 2, p. 97–106, 2002. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33867. Acesso em: 22 jan. 2025.

Chicago

Perdomo, Oscar. 2002. „Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature“. Revista Colombiana De Matemáticas 36 (2):97-106. https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Harvard

Perdomo, O. (2002) „Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature“, Revista Colombiana de Matemáticas, 36(2), S. 97–106. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33867 (Zugegriffen: 22 Januar 2025).

IEEE

[1]
O. Perdomo, „Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature“, rev.colomb.mat, Bd. 36, Nr. 2, S. 97–106, Juli 2002.

MLA

Perdomo, O. „Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature“. Revista Colombiana de Matemáticas, Bd. 36, Nr. 2, Juli 2002, S. 97-106, https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Turabian

Perdomo, Oscar. „Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature“. Revista Colombiana de Matemáticas 36, no. 2 (Juli 1, 2002): 97–106. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Vancouver

1.
Perdomo O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. rev.colomb.mat [Internet]. 1. Juli 2002 [zitiert 22. Januar 2025];36(2):97-106. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33867

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

182

Downloads

Keine Nutzungsdaten vorhanden.