Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature
Schlagworte:
Clifford hypersurfaces, minimal hypersurfaces, shape operator (es)Downloads
In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone.
By Gauss' formula, the condition on the scalar curvature is equivalent to the condition that the function K1(m)2 + ... + Kn-1 (m)2 varies radially. Here the Ki are the principal curvatures at m ∈ M. Under the same hypothesis, for M ⊏ ℝ10 we prove that if not only K1(m)2 + ... + Kn-1 (m)2 varies radially but either K1(m)3 + ... + Kn-1 (m)3 varies radially or K1(m)4 + ... + Kn-1 (m)4 varies radially, then M must be either a hyperplane or a Clifford minimal cone.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2002 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.