Publicado

2002-07-01

Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature

Palabras clave:

Clifford hypersurfaces, minimal hypersurfaces, shape operator (es)

Descargas

Autores/as

  • Oscar Perdomo Universidad del Valle

In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n  - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone.

By Gauss' formula, the condition on the scalar curvature is equivalent to the condition that the function K1(m)2 + ... + Kn-1 (m)2 varies radially. Here the Ki are the principal curvatures at m ∈ M. Under the same hypothesis, for M ⊏ ℝ10  we prove that if not only K1(m)2 + ... + Kn-1 (m) varies radially but either K1(m)3 + ... + Kn-1 (m)3 varies radially or K1(m)4 + ... + Kn-1 (m)4 varies radially, then M must be either a hyperplane or a Clifford minimal cone.

Cómo citar

APA

Perdomo, O. (2002). Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas, 36(2), 97–106. https://revistas.unal.edu.co/index.php/recolma/article/view/33867

ACM

[1]
Perdomo, O. 2002. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas. 36, 2 (jul. 2002), 97–106.

ACS

(1)
Perdomo, O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. rev.colomb.mat 2002, 36, 97-106.

ABNT

PERDOMO, O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas, [S. l.], v. 36, n. 2, p. 97–106, 2002. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33867. Acesso em: 22 ene. 2025.

Chicago

Perdomo, Oscar. 2002. «Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature». Revista Colombiana De Matemáticas 36 (2):97-106. https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Harvard

Perdomo, O. (2002) «Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature», Revista Colombiana de Matemáticas, 36(2), pp. 97–106. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/33867 (Accedido: 22 enero 2025).

IEEE

[1]
O. Perdomo, «Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature», rev.colomb.mat, vol. 36, n.º 2, pp. 97–106, jul. 2002.

MLA

Perdomo, O. «Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature». Revista Colombiana de Matemáticas, vol. 36, n.º 2, julio de 2002, pp. 97-106, https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Turabian

Perdomo, Oscar. «Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature». Revista Colombiana de Matemáticas 36, no. 2 (julio 1, 2002): 97–106. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Vancouver

1.
Perdomo O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. rev.colomb.mat [Internet]. 1 de julio de 2002 [citado 22 de enero de 2025];36(2):97-106. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/33867

Descargar cita

Visitas a la página del resumen del artículo

182

Descargas

Los datos de descargas todavía no están disponibles.