Published

2002-07-01

Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature

Keywords:

Clifford hypersurfaces, minimal hypersurfaces, shape operator (es)

Authors

  • Oscar Perdomo Universidad del Valle

In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n  - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone.

By Gauss' formula, the condition on the scalar curvature is equivalent to the condition that the function K1(m)2 + ... + Kn-1 (m)2 varies radially. Here the Ki are the principal curvatures at m ∈ M. Under the same hypothesis, for M ⊏ ℝ10  we prove that if not only K1(m)2 + ... + Kn-1 (m) varies radially but either K1(m)3 + ... + Kn-1 (m)3 varies radially or K1(m)4 + ... + Kn-1 (m)4 varies radially, then M must be either a hyperplane or a Clifford minimal cone.

How to Cite

APA

Perdomo, O. (2002). Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas, 36(2), 97–106. https://revistas.unal.edu.co/index.php/recolma/article/view/33867

ACM

[1]
Perdomo, O. 2002. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas. 36, 2 (Jul. 2002), 97–106.

ACS

(1)
Perdomo, O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. rev.colomb.mat 2002, 36, 97-106.

ABNT

PERDOMO, O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. Revista Colombiana de Matemáticas, [S. l.], v. 36, n. 2, p. 97–106, 2002. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33867. Acesso em: 22 jan. 2025.

Chicago

Perdomo, Oscar. 2002. “Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature”. Revista Colombiana De Matemáticas 36 (2):97-106. https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Harvard

Perdomo, O. (2002) “Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature”, Revista Colombiana de Matemáticas, 36(2), pp. 97–106. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33867 (Accessed: 22 January 2025).

IEEE

[1]
O. Perdomo, “Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature”, rev.colomb.mat, vol. 36, no. 2, pp. 97–106, Jul. 2002.

MLA

Perdomo, O. “Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature”. Revista Colombiana de Matemáticas, vol. 36, no. 2, July 2002, pp. 97-106, https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Turabian

Perdomo, Oscar. “Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature”. Revista Colombiana de Matemáticas 36, no. 2 (July 1, 2002): 97–106. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33867.

Vancouver

1.
Perdomo O. Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature. rev.colomb.mat [Internet]. 2002 Jul. 1 [cited 2025 Jan. 22];36(2):97-106. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/33867

Download Citation

Article abstract page views

182

Downloads

Download data is not yet available.